A-Level H2 Math | 5 Essential Questions

Sigma Notation is a practice to express the sum of a lengthy series in a simple and concise way. The notation used for this is $\Sigma$ and it is always followed by the variable we are summing over. This symbol tells us to add up everything that follows it. The numbers we add together are called the terms of the series. 

This free online revision course is specially designed for students to revise important topics from A Level H2 Maths. The course content is presented in an easy to study format with 5 essential questions, core concepts and explanation videos for each topic. Please download the worksheet and try the questions yourself! Have fun learning with us, consider joining our tuition classes or online courses.
2017 EJC Promo Q7 (b) [Modified]

Given that $\sum\limits_{r=2}^{n}{\frac{1}{{{r}^{2}}-1}}=\frac{3}{4}-\frac{1}{2n}-\frac{1}{2\left( n+1 \right)}$,

(ii)

state $\sum\limits_{r=2}^{\infty }{\frac{1}{{{r}^{2}}-1}}$,

(ii) state $\sum\limits_{r=2}^{\infty }{\frac{1}{{{r}^{2}}-1}}$,

(iii)

find $\sum\limits_{r=2}^{n-1}{\frac{1}{r(r+2)}}$.

(iii) find $\sum\limits_{r=2}^{n-1}{\frac{1}{r(r+2)}}$.

Suggested Handwritten and Video Solutions


sigma notation A-Level (H2 Math) Sigma Notation Free Resources


sigma notation A-Level (H2 Math) Sigma Notation Free Resources


sigma notation A-Level (H2 Math) Sigma Notation Free Resources


sigma notation A-Level (H2 Math) Sigma Notation Free Resources

Share with your friends!

WhatsApp
Telegram
Facebook
2018 YJC Promo Q13

The terms of a geometric progression ${{u}_{1}},{{u}_{2}},{{u}_{3}},{{u}_{4}},…$ are such that the sum to infinity is $81$ and the sum of the first $4$ terms is $80$.
If ${{u}_{1}}>100\,\,$and $\,\text{n}\ge \text{3}$,

(i)

Show that $\frac{3}{r}-\frac{6}{r+1}+\frac{3}{r+2}=\frac{6}{r\left( r+1 \right)\left( r+2 \right)}$.

[1]

(i) Show that $\frac{3}{r}-\frac{6}{r+1}+\frac{3}{r+2}=\frac{6}{r\left( r+1 \right)\left( r+2 \right)}$.

[1]

(ii)

Hence show that $\sum\limits_{r=1}^{N}{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}=\frac{1}{4}-\frac{1}{2\left( N+1 \right)}+\frac{1}{2\left( N+2 \right)}$.

[3]

(ii) Hence show that $\sum\limits_{r=1}^{N}{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}=\frac{1}{4}-\frac{1}{2\left( N+1 \right)}+\frac{1}{2\left( N+2 \right)}$.

[3]

(iii)

Give a reason why the series $\sum\limits_{r=1}^{\infty }{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}$ converges and write down its value.

[2]

(iii) Give a reason why the series $\sum\limits_{r=1}^{\infty }{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}$ converges and write down its value.

[2]

(iv)

Use your answer to (ii) to find $\sum\limits_{r=3}^{N}{\frac{1}{r\left( r-1 \right)\left( r-2 \right)}}$in terms of $N$.

[2]

(iv) Use your answer to (ii) to find $\sum\limits_{r=3}^{N}{\frac{1}{r\left( r-1 \right)\left( r-2 \right)}}$in terms of $N$.

[2]

Suggested Handwritten and Video Solutions


sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resourcessigma notation A-Level (H2 Math) Sigma Notation Free Resources


sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resourcessigma notation A-Level (H2 Math) Sigma Notation Free Resources

Share with your friends!

WhatsApp
Telegram
Facebook
2019 DHS Promo Q2

Using the result $\sum\limits_{r=1}^{n}{\frac{r}{{{2}^{r}}}}=2-\frac{n+2}{{{2}^{n}}}$, show that $\sum\limits_{r=1}^{n}{\left( r-n \right)\left( {{2}^{-r}}+1 \right)}$ can be expressed in the form $C\left( 1-\frac{1}{{{2}^{n}}} \right)+Dn\left( n+1 \right)$, where $C$ and $D$ are constants to be determined.

[4]

Suggested Handwritten and Video Solutions
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources

Share with your friends!

WhatsApp
Telegram
Facebook
2017 VJC P1 Q8

It is given that $\sum\limits_{r=1}^{n}{\frac{{{r}^{2}}}{{{3}^{r}}}}=\frac{3}{2}-\frac{{{n}^{2}}+3n+3}{2\left( {{3}^{n}} \right)}$ .

(i)

Find $\sum\limits_{r=1}^{\infty }{\frac{{{r}^{2}}+{{\left( -1 \right)}^{r}}}{{{3}^{r}}}}$.

[3]

(i) Find $\sum\limits_{r=1}^{\infty }{\frac{{{r}^{2}}+{{\left( -1 \right)}^{r}}}{{{3}^{r}}}}$.

[3]

(ii)

Show that $\sum\limits_{r=4}^{n}{\frac{{{\left( r-2 \right)}^{2}}}{{{3}^{r-2}}}}=\frac{p}{q}-\frac{a{{n}^{2}}-an+a}{2\left( {{3}^{n-2}} \right)}$, where $a$, $p$ and $q$ are integers to be determined.

[5]

(ii) Show that $\sum\limits_{r=4}^{n}{\frac{{{\left( r-2 \right)}^{2}}}{{{3}^{r-2}}}}=\frac{p}{q}-\frac{a{{n}^{2}}-an+a}{2\left( {{3}^{n-2}} \right)}$, where $a$, $p$ and $q$ are integers to be determined.

[5]

Suggested Handwritten and Video Solutions
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resourcessigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resourcessigma notation A-Level (H2 Math) Sigma Notation Free Resources

Share with your friends!

WhatsApp
Telegram
Facebook
2020 EJC P1 Q10

The diagram shows the graph of $y=\frac{1}{{{x}^{2}}+1}$ when $x>0$.

sigma notation A-Level (H2 Math) Sigma Notation Free Resources

(i)

Evaluate $\int_{k}^{k+1}{\frac{1}{{{x}^{2}}+1}\text{d}x}$ for $k>0$, leaving your answer in terms of $k$.

[2]

(i) Evaluate $\int_{k}^{k+1}{\frac{1}{{{x}^{2}}+1}\text{d}x}$ for $k>0$, leaving your answer in terms of $k$.

[2]

(ii)

By considering appropriate rectangles on the interval $\left[ k,k+1 \right]$for the curve $y=\frac{1}{{{x}^{2}}+1}$, show that

$\frac{1}{{{\left( k+1 \right)}^{2}}+1}<{{\tan }^{-1}}\left( k+1 \right)-{{\tan }^{-1}}k<\frac{1}{{{k}^{2}}+1}$ for $k\in {{\mathbb{Z}}^{+}}$.

[2]

(ii) By considering appropriate rectangles on the interval $\left[ k,k+1 \right]$for the curve $y=\frac{1}{{{x}^{2}}+1}$, show that

$\frac{1}{{{\left( k+1 \right)}^{2}}+1}<{{\tan }^{-1}}\left( k+1 \right)-{{\tan }^{-1}}k<\frac{1}{{{k}^{2}}+1}$ for $k\in {{\mathbb{Z}}^{+}}$.

[2]

(iii)

Use the identity $\tan \left( A-B \right)=\frac{\tan A-\tan B}{1+\tan A\tan B}$ to show that

${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\frac{x-y}{1+xy}$, where $x>y>0$.

[2]

(iii) Use the identity $\tan \left( A-B \right)=\frac{\tan A-\tan B}{1+\tan A\tan B}$ to show that

${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\frac{x-y}{1+xy}$, where $x>y>0$.

[2]

(iv)

By considering parts (ii) and (iii), prove by the method of differences that

$\sum\limits_{k=1}^{n}{\frac{1}{{{\left( k+1 \right)}^{2}}+1}}<{{\tan }^{-1}}\left( \frac{n}{n+2} \right)<\sum\limits_{k=1}^{n}{\frac{1}{{{k}^{2}}+1}}$

[4]

(iv) By considering parts (ii) and (iii), prove by the method of differences that

$\sum\limits_{k=1}^{n}{\frac{1}{{{\left( k+1 \right)}^{2}}+1}}<{{\tan }^{-1}}\left( \frac{n}{n+2} \right)<\sum\limits_{k=1}^{n}{\frac{1}{{{k}^{2}}+1}}$

[4]

Suggested Handwritten and Video Solutions
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources
sigma notation A-Level (H2 Math) Sigma Notation Free Resources

Share with your friends!

WhatsApp
Telegram
Facebook

Download Sigma Notation Worksheet

Learn more about our H2 Math

sigma notation A-Level (H2 Math) Sigma Notation Free Resources
Play Video

H2 Math Question Bank

Features of Online Math Lesson

Check out our question bank, where our students have access to thousands of H2 Math questions with video and handwritten solutions.

Share with your friends!

WhatsApp
Telegram
Facebook
Tim Gan Math

Tim Gan Math

Typically replies within an hour

I will be back soon

Tim Gan Math
Hey there! How can we help you today?
Start Chat with:
chat