A-Level H2 Math
5 Essential Questions

Here is where we provide free online Revision materials for your H2 Math. We have compiled 5 essential questions from each topic for you and broken down the core concepts with video explanations. Please download the worksheet and try the questions yourself! Have fun learning with us, consider joining our tuition classes or online courses.

  • Q1
  • Q2
  • Q3
  • Q4
  • Q5
2017 EJC Promo Q7 (b) [Modified]

Given that $\sum\limits_{r=2}^{n}{\frac{1}{{{r}^{2}}-1}}=\frac{3}{4}-\frac{1}{2n}-\frac{1}{2\left( n+1 \right)}$,

(ii)

state $\sum\limits_{r=2}^{\infty }{\frac{1}{{{r}^{2}}-1}}$,

(ii) state $\sum\limits_{r=2}^{\infty }{\frac{1}{{{r}^{2}}-1}}$,

(iii)

find $\sum\limits_{r=2}^{n-1}{\frac{1}{r(r+2)}}$.

(iii) find $\sum\limits_{r=2}^{n-1}{\frac{1}{r(r+2)}}$.

Suggested Handwritten and Video Solutions
  • (ii)
  • (iii)



  • (ii)
  • (iii)



Share with your friends!

Share on whatsapp
WhatsApp
Share on telegram
Telegram
2018 YJC Promo Q13

The terms of a geometric progression ${{u}_{1}},{{u}_{2}},{{u}_{3}},{{u}_{4}},…$ are such that the sum to infinity is $81$ and the sum of the first $4$ terms is $80$.
If ${{u}_{1}}>100\,\,$and $\,\text{n}\ge \text{3}$,

(i)

Show that $\frac{3}{r}-\frac{6}{r+1}+\frac{3}{r+2}=\frac{6}{r\left( r+1 \right)\left( r+2 \right)}$.

[1]

(i) Show that $\frac{3}{r}-\frac{6}{r+1}+\frac{3}{r+2}=\frac{6}{r\left( r+1 \right)\left( r+2 \right)}$.

[1]

(ii)

Hence show that $\sum\limits_{r=1}^{N}{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}=\frac{1}{4}-\frac{1}{2\left( N+1 \right)}+\frac{1}{2\left( N+2 \right)}$.

[3]

(ii) Hence show that $\sum\limits_{r=1}^{N}{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}=\frac{1}{4}-\frac{1}{2\left( N+1 \right)}+\frac{1}{2\left( N+2 \right)}$.

[3]

(iii)

Give a reason why the series $\sum\limits_{r=1}^{\infty }{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}$ converges and write down its value.

[2]

(iii) Give a reason why the series $\sum\limits_{r=1}^{\infty }{\frac{1}{r\left( r+1 \right)\left( r+2 \right)}}$ converges and write down its value.

[2]

(iv)

Use your answer to (ii) to find $\sum\limits_{r=3}^{N}{\frac{1}{r\left( r-1 \right)\left( r-2 \right)}}$in terms of $N$.

[2]

(iv) Use your answer to (ii) to find $\sum\limits_{r=3}^{N}{\frac{1}{r\left( r-1 \right)\left( r-2 \right)}}$in terms of $N$.

[2]

Suggested Handwritten and Video Solutions
  • (i)
  • (ii)
  • (iii)
  • (iv)


  • (i)
  • (ii)
  • (iii)
  • (iv)


Share with your friends!

Share on whatsapp
WhatsApp
Share on telegram
Telegram
2019 DHS Promo Q2

Using the result $\sum\limits_{r=1}^{n}{\frac{r}{{{2}^{r}}}}=2-\frac{n+2}{{{2}^{n}}}$, show that $\sum\limits_{r=1}^{n}{\left( r-n \right)\left( {{2}^{-r}}+1 \right)}$ can be expressed in the form $C\left( 1-\frac{1}{{{2}^{n}}} \right)+Dn\left( n+1 \right)$, where $C$ and $D$ are constants to be determined.

[4]

Suggested Handwritten and Video Solutions

Share with your friends!

Share on whatsapp
WhatsApp
Share on telegram
Telegram
2017 VJC P1 Q8

It is given that $\sum\limits_{r=1}^{n}{\frac{{{r}^{2}}}{{{3}^{r}}}}=\frac{3}{2}-\frac{{{n}^{2}}+3n+3}{2\left( {{3}^{n}} \right)}$ .

(i)

Find $\sum\limits_{r=1}^{\infty }{\frac{{{r}^{2}}+{{\left( -1 \right)}^{r}}}{{{3}^{r}}}}$.

[3]

(i) Find $\sum\limits_{r=1}^{\infty }{\frac{{{r}^{2}}+{{\left( -1 \right)}^{r}}}{{{3}^{r}}}}$.

[3]

(ii)

Show that $\sum\limits_{r=4}^{n}{\frac{{{\left( r-2 \right)}^{2}}}{{{3}^{r-2}}}}=\frac{p}{q}-\frac{a{{n}^{2}}-an+a}{2\left( {{3}^{n-2}} \right)}$, where $a$, $p$ and $q$ are integers to be determined.

[5]

(ii) Show that $\sum\limits_{r=4}^{n}{\frac{{{\left( r-2 \right)}^{2}}}{{{3}^{r-2}}}}=\frac{p}{q}-\frac{a{{n}^{2}}-an+a}{2\left( {{3}^{n-2}} \right)}$, where $a$, $p$ and $q$ are integers to be determined.

[5]

Suggested Handwritten and Video Solutions
  • (i)
  • (ii)
  • (i)
  • (ii)

Share with your friends!

Share on whatsapp
WhatsApp
Share on telegram
Telegram
2020 EJC P1 Q10

The diagram shows the graph of $y=\frac{1}{{{x}^{2}}+1}$ when $x>0$.

(i)

Evaluate $\int_{k}^{k+1}{\frac{1}{{{x}^{2}}+1}\text{d}x}$ for $k>0$, leaving your answer in terms of $k$.

[2]

(i) Evaluate $\int_{k}^{k+1}{\frac{1}{{{x}^{2}}+1}\text{d}x}$ for $k>0$, leaving your answer in terms of $k$.

[2]

(ii)

By considering appropriate rectangles on the interval $\left[ k,k+1 \right]$for the curve $y=\frac{1}{{{x}^{2}}+1}$, show that

$\frac{1}{{{\left( k+1 \right)}^{2}}+1}<{{\tan }^{-1}}\left( k+1 \right)-{{\tan }^{-1}}k<\frac{1}{{{k}^{2}}+1}$ for $k\in {{\mathbb{Z}}^{+}}$.

[2]

(ii) By considering appropriate rectangles on the interval $\left[ k,k+1 \right]$for the curve $y=\frac{1}{{{x}^{2}}+1}$, show that

$\frac{1}{{{\left( k+1 \right)}^{2}}+1}<{{\tan }^{-1}}\left( k+1 \right)-{{\tan }^{-1}}k<\frac{1}{{{k}^{2}}+1}$ for $k\in {{\mathbb{Z}}^{+}}$.

[2]

(iii)

Use the identity $\tan \left( A-B \right)=\frac{\tan A-\tan B}{1+\tan A\tan B}$ to show that

${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\frac{x-y}{1+xy}$, where $x>y>0$.

[2]

(iii) Use the identity $\tan \left( A-B \right)=\frac{\tan A-\tan B}{1+\tan A\tan B}$ to show that

${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\frac{x-y}{1+xy}$, where $x>y>0$.

[2]

(iv)

By considering parts (ii) and (iii), prove by the method of differences that

$\sum\limits_{k=1}^{n}{\frac{1}{{{\left( k+1 \right)}^{2}}+1}}<{{\tan }^{-1}}\left( \frac{n}{n+2} \right)<\sum\limits_{k=1}^{n}{\frac{1}{{{k}^{2}}+1}}$

[4]

(iv) By considering parts (ii) and (iii), prove by the method of differences that

$\sum\limits_{k=1}^{n}{\frac{1}{{{\left( k+1 \right)}^{2}}+1}}<{{\tan }^{-1}}\left( \frac{n}{n+2} \right)<\sum\limits_{k=1}^{n}{\frac{1}{{{k}^{2}}+1}}$

[4]

Suggested Handwritten and Video Solutions
  • (i)
  • (ii)
  • (iii)
  • (iv)
  • (i)
  • (ii)
  • (iii)
  • (iv)

Share with your friends!

Share on whatsapp
WhatsApp
Share on telegram
Telegram

Download Sigma Notation Worksheet

H2 Math Question Bank

Features of Online Math Lesson

Check out our question bank, where our students have access to thousands of H2 Math questions with video and handwritten solutions.

Share with your friends!

Share on whatsapp
WhatsApp
Share on telegram
Telegram

Leave a Reply

Your email address will not be published. Required fields are marked *