Sigma Notation is a practice to express the sum of a lengthy series in a simple and concise way. The notation used for this is $\Sigma$ and it is always followed by the variable we are summing over. This symbol tells us to add up everything that follows it. The numbers we add together are called the terms of the series.Â
Given that $\sum\limits_{r=2}^{n}{\frac{1}{{{r}^{2}}-1}}=\frac{3}{4}-\frac{1}{2n}-\frac{1}{2\left( n+1 \right)}$,
(ii)
state $\sum\limits_{r=2}^{\infty }{\frac{1}{{{r}^{2}}-1}}$,
(ii) state $\sum\limits_{r=2}^{\infty }{\frac{1}{{{r}^{2}}-1}}$,
(iii)
find $\sum\limits_{r=2}^{n-1}{\frac{1}{r(r+2)}}$.
(iii) find $\sum\limits_{r=2}^{n-1}{\frac{1}{r(r+2)}}$.
Share with your friends!
The terms of a geometric progression ${{u}_{1}},{{u}_{2}},{{u}_{3}},{{u}_{4}},…$ are such that the sum to infinity is $81$ and the sum of the first $4$ terms is $80$.
If ${{u}_{1}}>100\,\,$and $\,\text{n}\ge \text{3}$,
(i)
[1]
[1]
(ii)
[3]
[3]
(iii)
[2]
[2]
(iv)
[2]
[2]
Share with your friends!
Using the result $\sum\limits_{r=1}^{n}{\frac{r}{{{2}^{r}}}}=2-\frac{n+2}{{{2}^{n}}}$, show that $\sum\limits_{r=1}^{n}{\left( r-n \right)\left( {{2}^{-r}}+1 \right)}$ can be expressed in the form $C\left( 1-\frac{1}{{{2}^{n}}} \right)+Dn\left( n+1 \right)$, where $C$ and $D$ are constants to be determined.
[4]
Share with your friends!
It is given that $\sum\limits_{r=1}^{n}{\frac{{{r}^{2}}}{{{3}^{r}}}}=\frac{3}{2}-\frac{{{n}^{2}}+3n+3}{2\left( {{3}^{n}} \right)}$ .
(i)
Find $\sum\limits_{r=1}^{\infty }{\frac{{{r}^{2}}+{{\left( -1 \right)}^{r}}}{{{3}^{r}}}}$.
[3]
(i) Find $\sum\limits_{r=1}^{\infty }{\frac{{{r}^{2}}+{{\left( -1 \right)}^{r}}}{{{3}^{r}}}}$.
[3]
(ii)
Show that $\sum\limits_{r=4}^{n}{\frac{{{\left( r-2 \right)}^{2}}}{{{3}^{r-2}}}}=\frac{p}{q}-\frac{a{{n}^{2}}-an+a}{2\left( {{3}^{n-2}} \right)}$, where $a$, $p$ and $q$ are integers to be determined.
[5]
[5]
Share with your friends!
The diagram shows the graph of $y=\frac{1}{{{x}^{2}}+1}$ when $x>0$.
(i)
[2]
[2]
(ii)
$\frac{1}{{{\left( k+1 \right)}^{2}}+1}<{{\tan }^{-1}}\left( k+1 \right)-{{\tan }^{-1}}k<\frac{1}{{{k}^{2}}+1}$ for $k\in {{\mathbb{Z}}^{+}}$.
[2]
$\frac{1}{{{\left( k+1 \right)}^{2}}+1}<{{\tan }^{-1}}\left( k+1 \right)-{{\tan }^{-1}}k<\frac{1}{{{k}^{2}}+1}$ for $k\in {{\mathbb{Z}}^{+}}$.
[2]
(iii)
${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\frac{x-y}{1+xy}$, where $x>y>0$.
[2]
${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\frac{x-y}{1+xy}$, where $x>y>0$.
[2]
(iv)
By considering parts (ii) and (iii), prove by the method of differences that
$\sum\limits_{k=1}^{n}{\frac{1}{{{\left( k+1 \right)}^{2}}+1}}<{{\tan }^{-1}}\left( \frac{n}{n+2} \right)<\sum\limits_{k=1}^{n}{\frac{1}{{{k}^{2}}+1}}$
[4]
(iv) By considering parts (ii) and (iii), prove by the method of differences that
$\sum\limits_{k=1}^{n}{\frac{1}{{{\left( k+1 \right)}^{2}}+1}}<{{\tan }^{-1}}\left( \frac{n}{n+2} \right)<\sum\limits_{k=1}^{n}{\frac{1}{{{k}^{2}}+1}}$
[4]
Share with your friends!
Download Sigma Notation Worksheet
Learn more about our H2 Math Tuition
H2 Math Question Bank
Check out our question bank, where our students have access to thousands of H2 Math questions with video and handwritten solutions.
Share with your friends!
How can we help?