# 2001 A Level H2 Math

2021

2022

2023

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1995

1994

1993

1991

1990

1986

1984

1983

1982

### Â  Â 1971-1980

1978

1977

1973

Paper 1
Paper 2
##### 2001 A Level H2 Math Paper 1 Question 2

Find the equation of the tangent to the curve $y={{e}^{x}}$ at the point where $x=a$. Hence find the equation of the tangent to the curve $y={{e}^{x}}$ which passes through the origin. The straight line $y=mx$ intersects the curve $y={{e}^{x}}$ in two distinct points. Write down an inequality for $m$.

##### 2001 A Level H2 Math Paper 1 Question 18 [Modified]

(i)

Find the exact value of $\int_{0}^{1}{\frac{1}{1+{{x}^{2}}}\,\text{d}x}$.

(i) Find the exact value of $\int_{0}^{1}{\frac{1}{1+{{x}^{2}}}\,\text{d}x}$.

(ii)

The graph of $y\,=\,\frac{1}{1+{{x}^{2}}}$, for $0\le x\le 1$, is shown in the diagram. Rectangles, each of width $\frac{1}{n}$, are drawn under the curve. Show that the total area $A$ of all $n$ rectangles is given by $A\,=\,\frac{1}{n}\left\{ \frac{1}{1+{{\left( \frac{1}{n} \right)}^{2}}}+\frac{1}{1+{{\left( \frac{2}{n} \right)}^{2}}}+\frac{1}{1+{{\left( \frac{3}{n} \right)}^{2}}}+…+\frac{1}{2} \right\}$.

State the limit of $A$ as $n\to \infty$.

(ii) The graph of $y\,=\,\frac{1}{1+{{x}^{2}}}$, for $0\le x\le 1$, is shown in the diagram. Rectangles, each of width $\frac{1}{n}$, are drawn under the curve. Show that the total area $A$ of all $n$ rectangles is given by $A\,=\,\frac{1}{n}\left\{ \frac{1}{1+{{\left( \frac{1}{n} \right)}^{2}}}+\frac{1}{1+{{\left( \frac{2}{n} \right)}^{2}}}+\frac{1}{1+{{\left( \frac{3}{n} \right)}^{2}}}+…+\frac{1}{2} \right\}$.

State the limit of $A$ as $n\to \infty$.

(iii)

It is given that $B\,=\,\frac{1}{n}\left\{ \frac{1}{1+{{\left( \frac{1}{n} \right)}^{4}}}+\frac{1}{1+{{\left( \frac{2}{n} \right)}^{4}}}+\frac{1}{1+{{\left( \frac{3}{n} \right)}^{4}}}+…+\frac{1}{2} \right\}$. Find using the aid of a calculator the limit of $B$ as $n\to \infty$ correct to $3$ significant figures.

(iii) It is given that $B\,=\,\frac{1}{n}\left\{ \frac{1}{1+{{\left( \frac{1}{n} \right)}^{4}}}+\frac{1}{1+{{\left( \frac{2}{n} \right)}^{4}}}+\frac{1}{1+{{\left( \frac{3}{n} \right)}^{4}}}+…+\frac{1}{2} \right\}$. Find using the aid of a calculator the limit of $B$ as $n\to \infty$ correct to $3$ significant figures.

##### 2001 A Level H2 Math Paper 2 Question 6

A random variable $X$ has the probability distribution given in the following table:

(i)

Given that $\text{E}\left( X \right)=4$, find $p$ and $q$.

(i) Given that $\text{E}\left( X \right)=4$, find $p$ and $q$.

(ii)

Show that $\text{Var}\left( X \right)=1$.

(ii) Show that $\text{Var}\left( X \right)=1$.

(iii)

Find $\text{E}\left( \left| X-4 \right| \right)$.

(iii) Find $\text{E}\left( \left| X-4 \right| \right)$.

(iv)*

Ten independent observations of $X$ are taken. Find the probability that the value of $3$ is obtained at most $3$ times.

(iv)* Ten independent observations of $X$ are taken. Find the probability that the value of $3$ is obtained at most $3$ times.

##### 2001 A Level H2 Math Paper 2 Question 15 (b)

By expanding $\left( \mathbf{b}-\mathbf{c} \right)\,\centerdot \,\left( \mathbf{b}-\mathbf{c} \right)$, simplify

${{\left| \mathbf{b} \right|}^{2}}+{{\left| \mathbf{c} \right|}^{2}}-\left( \mathbf{b}-\mathbf{c} \right)\,\centerdot \,\left( \mathbf{b}-\mathbf{c} \right)$

By taking $\mathbf{b}=\overrightarrow{AC}$ and $\mathbf{c}=\overrightarrow{AB}$, deduce the cosine formula for triangle $ABC$.

[4]