Ten-Year-Series (TYS) Solutions | Past Year Exam Questions

2011 A Level H2 Math

These Ten-Year-Series (TYS) worked solutions with video explanations for 2011 A Level H2 Mathematics are suggested by Mr Gan. For any comments or suggestions please contact us at support@timganmath.edu.sg.

Select Year
Paper 1
Paper 2
2011 A Level H2 Math Paper 1 Question 1

Without using a calculator, solve the inequality

$\frac{{{x}^{2}}+x+1}{{{x}^{2}}+x-2}<0$.

[4]

Suggested Handwritten and Video Solutions
2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 3

The parametric equation of a curve are

$x={{t}^{2}}$, $y=\frac{2}{t}$

(i)

Find the equation of the tangent to the curve at the point $\left( {{p}^{2}},\frac{2}{p} \right)$, simplifying your answer.

[2]

(i) Find the equation of the tangent to the curve at the point $\left( {{p}^{2}},\frac{2}{p} \right)$, simplifying your answer.

[2]

(ii)

Hence find the coordinates of the points $Q$ and $R$ where this tangent meets the $x$- and $y$- axes respectively.

[2]

(ii) Hence find the coordinates of the points $Q$ and $R$ where this tangent meets the $x$- and $y$- axes respectively.

[2]

(iii)

Find a cartesian equation of the locus of (of the curve traced by) the mid-point of $QR$ as $p$ varies.

[3]

(iii) Find a cartesian equation of the locus of (of the curve traced by) the mid-point of $QR$ as $p$ varies.

[3]

Suggested Handwritten and Video Solutions
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 4

(i)

Use the first three non-zero terms of the Maclaurin series for $\cos x$ to find the Maclaurin series for $\text{g}\left( x \right)$, where $\text{g}\left( x \right)={{\cos }^{6}}x$, up to and including the term in ${{x}^{4}}$.

[3]

(i) Use the first three non-zero terms of the Maclaurin series for $\cos x$ to find the Maclaurin series for $\text{g}\left( x \right)$, where $\text{g}\left( x \right)={{\cos }^{6}}x$, up to and including the term in ${{x}^{4}}$.

[3]

(ii)

(ii)(a) Use your answer to part (i) to give an approximation for $\int_{0}^{a}{\text{g}\left( x \right)}\text{ d}x$ in terms of $a$, and evaluate this approximation in the case where $a=\frac{1}{4}\pi $.

[3]

(a) Use your answer to part (i) to give an approximation for $\int_{0}^{a}{\text{g}\left( x \right)}\text{ d}x$ in terms of $a$, and evaluate this approximation in the case where $a=\frac{1}{4}\pi $.

[3]

(b) Use your calculator to find an accurate value for $\int_{0}^{\frac{1}{4}\pi }{\text{g}\left( x \right)}\text{ d}x$. Why is the approximation in part (ii)(a) not very good?

[2]

(b) Use your calculator to find an accurate value for $\int_{0}^{\frac{1}{4}\pi }{\text{g}\left( x \right)}\text{ d}x$. Why is the approximation in part (ii)(a) not very good?

[2]

Suggested Video Solutions
Suggested Handwritten Solutions

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 7
2011 TYS 2011

Referred to the origin $O$, the points $A$ and $B$ are such that $\overrightarrow{OA}=\mathbf{a}$ and $\overrightarrow{OB}=\mathbf{b}$. The point $P$ on $OA$ is such that $OP:PA=1:2$, and the point $Q$ on $OB$ is such that $OQ:QB=3:2$. The mid-point of $PQ$ is $M$ (see diagram).

(i)

Find $\overrightarrow{OM}$ in terms of $\mathbf{a}$ and $\mathbf{b}$ and show that the area of triangle $OPM$ can be written as $k\left| \mathbf{a}\times \mathbf{b} \right|$, where $k$ is a constant to be found.

[6]

(i) Find $\overrightarrow{OM}$ in terms of $\mathbf{a}$ and $\mathbf{b}$ and show that the area of triangle $OPM$ can be written as $k\left| \mathbf{a}\times \mathbf{b} \right|$, where $k$ is a constant to be found.

[6]

(ii)

The vectors $\mathbf{a}$ and $\mathbf{b}$ are now given by

$\mathbf{a}=2p\mathbf{i}-6p\mathbf{j}+3p\mathbf{k}$ and $\mathbf{b}=\mathbf{i}+\mathbf{j}-2\mathbf{k}$,

where $p$ is a positive constant. Given that $\mathbf{a}$ is a unit vector,

(ii) The vectors $\mathbf{a}$ and $\mathbf{b}$ are now given by

$\mathbf{a}=2p\mathbf{i}-6p\mathbf{j}+3p\mathbf{k}$ and $\mathbf{b}=\mathbf{i}+\mathbf{j}-2\mathbf{k}$,

where $p$ is a positive constant. Given that $\mathbf{a}$ is a unit vector,

(a) find the exact value of $p$,

[2]

(a) find the exact value of $p$,

[2]

(b) give a geometrical interpretation of $\left| \mathbf{a}\cdot \mathbf{b} \right|$,

[1]

(b) give a geometrical interpretation of $\left| \mathbf{a}\cdot \mathbf{b} \right|$,

[1]

(c) evaluate $\mathbf{a}\times \mathbf{b}$.

[2]

(c) evaluate $\mathbf{a}\times \mathbf{b}$.

[2]

Suggested Video Solutions
Suggested Handwritten Solutions

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 10

Do not use a graphing calculator in answering this question.

(i)

The roots of the equation ${{z}^{2}}=-8\mathbf{i}$ are ${{z}_{1}}$ and ${{z}_{2}}$. Find ${{z}_{1}}$ and ${{z}_{2}}$ in cartesian form $x+\mathbf{i}y$, showing your working.

[4]

(ii)

Hence, or otherwise, find in cartesian form the roots ${{w}_{1}}$ and ${{w}_{2}}$ of the equation

${{w}^{2}}+4w+\left( 4+2\mathbf{i} \right)=0$

[3]

Suggested Handwritten and Video Solutions


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 2 Question 5

The continuous random variable $X$ has the distribution $N\left( \mu ,{{\sigma }^{2}} \right)$. It is known that $\text{P}\left( X<40.0 \right)=0.05$ and $\text{P}\left( X<70.0 \right)=0.975$. Calculate the values of $\mu $ and $\sigma $.

[4]

Suggested Handwritten and Video Solutions
2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 2 Question 11 [Modified]

A committee of $10$ people is chosen at random from a group consisting of $18$ women and $12$ men. The number of women on the committee is denoted by $R$.

(i)

Find the probability that $R=4$.

(i) Find the probability that $R=4$.

(ii)

The most probable number of women on the committee is denoted by $r$. By using the fact that $\text{P}\left( R=r \right)>\text{P}\left( R=r+1 \right)$, show that $r$ satisfies the inequality

$\left( r+1 \right)!\left( 17-r \right)!\left( 9-r \right)!\left( r+3 \right)!>r!\left( 18-r \right)!\left( 10-r \right)!\left( r+2 \right)!$

And use this inequality to find the value of $r$.

(ii) The most probable number of women on the committee is denoted by $r$. By using the fact that $\text{P}\left( R=r \right)>\text{P}\left( R=r+1 \right)$, show that $r$ satisfies the inequality

$\left( r+1 \right)!\left( 17-r \right)!\left( 9-r \right)!\left( r+3 \right)!>r!\left( 18-r \right)!\left( 10-r \right)!\left( r+2 \right)!$

And use this inequality to find the value of $r$.

(iii)

Use the calculator to find $\text{E}\left( R \right)$ and $\text{Var}\left( R \right)$.

(iii) Use the calculator to find $\text{E}\left( R \right)$ and $\text{Var}\left( R \right)$.

Suggested Handwritten and Video Solutions


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook

H2 Math Free Mini Course

2011 TYS 2011

Sign up for the free mini course and experience learning with us for 30 Days!

Register for FREE H2 Math Mini-course
2011 TYS 2011
Play Video

Join us to gain access to our Question Bank, Student Learning Portal, Recorded Lectures and many more.