Ten-Year-Series (TYS) Solutions | Past Year Exam Questions

2011 A Level H2 Math

These Ten-Year-Series (TYS) worked solutions with video explanations for 2011 A Level H2 Mathematics are suggested by Mr Gan. For any comments or suggestions please contact us at support@timganmath.edu.sg.

Select Year

  2021

2021

   1991-2000

2000

1995

1994

1993

1991

   1981-1990

1990

1986

1984

1983

1982

   1971-1980

1978

1977

1973

Paper 1
Paper 2
2011 A Level H2 Math Paper 1 Question 1
Suggested Handwritten and Video Solutions
2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 3
Suggested Handwritten and Video Solutions
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011
2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 7
2011 TYS 2011

Referred to the origin $O$, the points $A$ and $B$ are such that $\overrightarrow{OA}=\mathbf{a}$ and $\overrightarrow{OB}=\mathbf{b}$. The point $P$ on $OA$ is such that $OP:PA=1:2$, and the point $Q$ on $OB$ is such that $OQ:QB=3:2$. The mid-point of $PQ$ is $M$ (see diagram).

(i)

Find $\overrightarrow{OM}$ in terms of $\mathbf{a}$ and $\mathbf{b}$ and show that the area of triangle $OPM$ can be written as $k\left| \mathbf{a}\times \mathbf{b} \right|$, where $k$ is a constant to be found.

[6]

(i) Find $\overrightarrow{OM}$ in terms of $\mathbf{a}$ and $\mathbf{b}$ and show that the area of triangle $OPM$ can be written as $k\left| \mathbf{a}\times \mathbf{b} \right|$, where $k$ is a constant to be found.

[6]

(ii)

The vectors $\mathbf{a}$ and $\mathbf{b}$ are now given by

$\mathbf{a}=2p\mathbf{i}-6p\mathbf{j}+3p\mathbf{k}$ and $\mathbf{b}=\mathbf{i}+\mathbf{j}-2\mathbf{k}$,

where $p$ is a positive constant. Given that $\mathbf{a}$ is a unit vector,

(ii) The vectors $\mathbf{a}$ and $\mathbf{b}$ are now given by

$\mathbf{a}=2p\mathbf{i}-6p\mathbf{j}+3p\mathbf{k}$ and $\mathbf{b}=\mathbf{i}+\mathbf{j}-2\mathbf{k}$,

where $p$ is a positive constant. Given that $\mathbf{a}$ is a unit vector,

(a) find the exact value of $p$,

[2]

(a) find the exact value of $p$,

[2]

(b) give a geometrical interpretation of $\left| \mathbf{a}\cdot \mathbf{b} \right|$,

[1]

(b) give a geometrical interpretation of $\left| \mathbf{a}\cdot \mathbf{b} \right|$,

[1]

(c) evaluate $\mathbf{a}\times \mathbf{b}$.

[2]

(c) evaluate $\mathbf{a}\times \mathbf{b}$.

[2]

Suggested Video Solutions
Suggested Handwritten Solutions

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 1 Question 10
Suggested Handwritten and Video Solutions


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 2 Question 5
Suggested Handwritten and Video Solutions
2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook
2011 A Level H2 Math Paper 2 Question 11 [Modified]
Suggested Handwritten and Video Solutions


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011


2011 TYS 2011

Share with your friends!

WhatsApp
Telegram
Facebook

H2 Math Free Mini Course

2011 TYS 2011

Sign up for the free mini course and experience learning with us for 30 Days!

Register for FREE H2 Math Mini-course
2011 TYS 2011
Play Video

Join us to gain access to our Question Bank, Student Learning Portal, Recorded Lectures and many more.