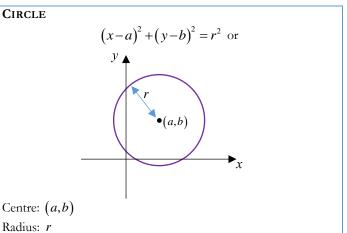
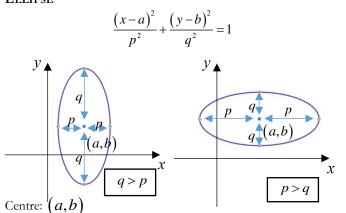
H2 MATHEMATICS SUMMARY NOTES

First Edition

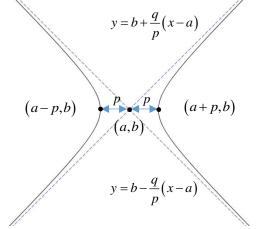
Timothy Gan BEng (Hons), PGDE

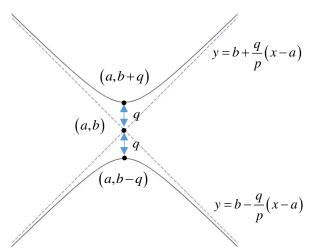

TABLE OF CONTENTS

PURE MATHEMATICS


Graphing Techniques and Transformations of Graph	2
Inequalities	6
Functions	8
Arithmetic and Geometric Progressions	10
Sigma Notation	10
Differentiation	11
Applications of Differentiation	11
Maclaurin Series	13
Integration	14
Applications of Integration	17
Differential Equations	18
Complex Numbers	19
Vectors	21
STATISTICS	
Permutation and Combinations	25
Probability	25
Discrete Random Variables	26
Binomial Distribution	27
Normal Distribution	27
Sampling	28
Hypothesis Testing	29
Correlation and Linear Regression	30

CONICS GRAPHS




HYPERBOLA

Radius: r

$$\frac{(x-a)^2}{p^2} - \frac{(y-b)^2}{q^2} = 1$$

$$\frac{(y-b)^2}{q^2} - \frac{(x-a)^2}{p^2} = 1$$

Finding the oblique asymptotes: As $x \to \infty$, $\frac{(x-a)^2}{p^2} \approx \frac{(y-b)^2}{q^2}$. [Equate to obtain the equations of asymptotes.]

Gradients of Oblique asymptotes: $y = \pm \frac{q}{p}$

H2 Mathematics Summary Notes **TRANSFORMATION OF GRAPHS**

y = f(x)	Vertical Transformation	Horizontal Transformation
	a units in the positive y direction:	a units in the positive x direction:
Translation	Replace y with $y-a$	Replace x with $x-a$
	$y-a = f(x) \Leftrightarrow y = f(x) + a$	y = f(x - a)
	a units in the negative y direction:	a units in the negative y direction:
	Replace y with $y+a$	Replace x with $x+a$
	$y + a = f(x) \Leftrightarrow y = f(x) - a$	y = f(x+a)
	Scaling by a factor of <i>a</i> parallel to the <i>y</i> -axis:	Scaling by a factor of a parallel to the y-axis:
Scaling	Replace y with $\frac{y}{a}$	Replace x with $\frac{x}{a}$
	$\frac{y}{a} = f(x) \Leftrightarrow y = af(x)$	$y = f\left(\frac{x}{a}\right)$
	Reflection about the x -axis:	Reflection about the y -axis:
Reflection	Replace y with −y	Replace x with $-x$
	$-y = f(x) \Leftrightarrow y = -f(x)$	$y = f\left(-x\right)$
Modulus	$y = \mathbf{f}(x) $	y = f(x)
	Reflect the negative y portion to positive about the x	Omit the negative x portion. (where $x < 0$)
	axis. Omit the negative y portion (where $y < 0$).	Retain the positive <i>x</i> portion of the graph and reflect it about the <i>y</i> axis.

COMPOSITE TRANSFORMATIONS

y = af(bx+c)+d	$y = f(x) \xrightarrow{I} y = f(x+c) \xrightarrow{II} y = f(bx+c) \xrightarrow{III} y = af(bx+c) \xrightarrow{IV} y = af(bx+c) + d$ Sequence of Transformations: I: Translation of c units in the negative x direction. (Replace x with $x+c$) II: Scaling with a factor of $\frac{1}{b}$ parallel to the x axis. (Replace x with y) III: Scaling with a factor of y parallel to the y axis. (Replace y with y) IV: Translation of y units in the positive y direction. (Replace y with $y-d$)
y = f(a - x)	$y = f(x) \xrightarrow{I} y = f(x+a) \xrightarrow{II} y = f(-x+a) \xrightarrow{III} y = f(- x +a)$ Sequence of Transformations: I: Translation of a units in the negative x direction. (Replace x with $x+a$) II: Reflection about the y axis. (Replace x with $-x$) III: Perform $y = f(x)$. (Replace x with $ x $)

RECIPROCAL GRAPH $y = \frac{1}{f(x)}$

Original Graph, $y = f(x) \implies \text{Reciprocal Graph}, \ y = \frac{1}{f(x)}$			
	Point $(x, y) \Rightarrow \text{Point}\left(x, \frac{1}{y}\right)$		
$x - intercept \Rightarrow Vertical Asymptote$ $Vertical Asymptote \Rightarrow x - intercept$ $Maximum point \Rightarrow Minimum point$ $Minimum point \Rightarrow Minimum point$			
MAR	Maximum point ⇒ Minimum point Minimum point ⇒ Maximum point		
	Horizontal Asymptote, $y = a \Rightarrow$ Horizontal Asymptote, $y = \frac{1}{a}$ (Except Horizontal Asymptote, $y = 0$ or x -axis)		
H	$f(x) > 0 \Rightarrow \frac{1}{f(x)} > 0$ If original graph is below/above the x axis, then the reciprocal graph remains below/above x axis.		
Curve approaches Horizontal Asymptote from above \Rightarrow approaches Horizontal Asymptote, $y = 0$ or x -axis			
$y \to 0 \implies y \to \infty$ $y \to \infty \implies y \to 0$			
	Increasing ⇒ Decreasing Decreasing ⇒ Increasing		

GRAPH OF THE DERIVATIVE FUNCTION y = f'(x) (GRADIENT GRAPH)

	Original Graph, $y = f(x) \Rightarrow$ Gradient Graph, $y = f'(x)$	
	Vertical Asymptote remains the same.	
$ \mathfrak{Z} $ Horizontal Asymptote, $y = a \Rightarrow$ Horizontal Asymptote, $y = 0$ (x-axis)		
MARKERS	Oblique Asymptote, $y = mx + c \implies$ Horizontal Asymptote, $y = m$	
	Stationary point $(a,b) \Rightarrow x$ -intercept $(x=a)$	
	Point of inflexion (Increasing/ Decreasing function) ⇒ Turning Point (Max/ Min)	
SKETCH	Compartmentalize graph with regions of positive or negative gradients. If gradient of $y = f(x)$ is positive, draw above the x -axis. If gradient of $y = f(x)$ is negative, draw below the x -axis.	
	If $y = f(x)$ approaches horizontal asymptote, then $f'(x)$ approaches $y = 0$. (x-axis) If $y = f(x)$ approaches oblique asymptote, $y = mx + c$, then $f'(x)$ approaches $y = m$. If gradient of $y = f(x)$ approaches ∞ , then $f'(x)$ approaches vertical asymptote.	

HERE PASSIONATE TEACHING INSPIR www.timganmath.com

INEQUALITIES

BASIC RESULTS

1. If
$$a > b$$
 and $b > c \implies a > c$

E.g.
$$12 > 5$$
 and $5 > -1 \Rightarrow 12 > -1$

2. If
$$a > b \implies a \pm c > b \pm c$$

E.g.
$$-5 > 7 \implies -5 \pm 10 > 7 \pm 10$$

3. If
$$a > b$$
 and $c > 0 \Rightarrow ac < bc$; $\frac{a}{c} < \frac{b}{c}$ E.g. $9 < 21 \Rightarrow \frac{9}{2} < \frac{21}{2}$

E.g.
$$9 < 21 \implies \frac{9}{2} < \frac{21}{2}$$

4. If
$$a > b$$
 and $c < 0 \Rightarrow ac < bc$; $\frac{a}{c} > \frac{b}{c}$ E.g. $9 < 21 \Rightarrow -\frac{9}{2} > -\frac{21}{2}$

E.g.
$$9 < 21 \implies -\frac{9}{2} > -\frac{21}{2}$$

5. If
$$ab > 0 \implies "a < 0 \text{ and } b < 0" \text{ or } "a > 0 \text{ and } b > 0"$$

6. If
$$ab < 0 \implies "a < 0 \text{ and } b > 0" \text{ or } "a > 0 \text{ and } b < 0"$$

Important notes:

- 1. Do not multiply inequality equations with variables without knowing whether it's positive or not.
- 2. Examples of variables which can be multiplied both sides with: |x|, e^{-x} , $(3x-1)^2$
- 3. Know the difference between "and" and "or". I.e. intersection and union of sets.
- 4. Solutions should not be equal to the roots of the denominator.

MODULUS FUNCTION

$$|x| < a \Leftrightarrow -a < x < a$$
,

$$|x| > a \Leftrightarrow x < -a \text{ or } x > a$$

$$a < x < b \Leftrightarrow a < x \text{ and } x < b$$

where a is a positive constant

where a is a positive constant

Important notes:

1.
$$x^2 = |x|^2$$
.

- 2. If both sides of the inequality are positive, then you can square both sides. i.e. $|a| < |b| \Leftrightarrow a^2 < b^2$
- 3. Do not square both sides if both sides are not positive. i.e. $|x| < x+1 \neq x^2 < (x+1)^2$. Solve it graphically.

INEQUALITIES INVOLVING SUBSTITUTION

Given that x < -a or x > b where a and b are positive constants.

Substitute x as
$$e^x$$

$$\Rightarrow e^x < -a \text{ (N.A) or } e^x > b$$

$$\Rightarrow e^x > b$$

$$\Rightarrow x > \ln b$$

Substitute
$$x$$
 as $\ln x$

$$\Rightarrow \ln x < -a \text{ or } \ln x > b$$

$$\Rightarrow 0 < x < e^{-a} \text{ or } x > e^{b}$$

Note:
$$x > 0$$
 for $\ln x$

Substitute
$$x$$
 as $|x|$

$$\Rightarrow |x| < -a \text{ (N.A) or } |x| > b$$

$$\Rightarrow |x| > b$$

$$\Rightarrow x > b$$
 or $x < -b$

Given that -a < x < b where a and b are positive constants.

Substitute x as e^x

$$\Rightarrow -a < e^x < b$$

$$\Rightarrow 0 < e^x < b$$

$$\Rightarrow x < \ln b$$

Substitute x as $\ln x$

$$\Rightarrow -a < \ln x < b$$

$$\Rightarrow e^{-a} < x < e^{b}$$

Substitute x as |x|

$$\Rightarrow -a < |x| < b$$

$$\Rightarrow 0 \le |x| < b$$

$$\Rightarrow 0 \le |x| \text{ and } |x| < b$$

$$\Rightarrow -b < x < b$$

PLEASE CONTACT US AT 8748 8161 TO COLLECT A FREE COPY OF THE SUMMARY NOTES WHILE STOCKS LAST!

TESTIMONIALS FROM STUDENTS

Mr. Gan is a really genuine and enthusiastic teacher. He puts in the extra hours to ensure our lessons are well-prepared and that his resources are conveniently accessible which allows us to learn much more efficient.

Emma Tang, CJC

He teaches with enthusiasm and passion and has a very efficient way of teaching using his tablet which is effective yet simple.

Ng Shuherng, NYJC

He simplified tedious formulas and thought of alternate methods to help us. Now I can do math in a more confident way and can even help others with their doubts.

Sangari, AJC

Mr. Gan also provides numerous ways to approach a question, allowing me to choose the one that I'm most comfortable with during application.

Mai Goh, AJC

I always look forward to math tuition with Mr Gan because he is a super entertaining teacher. He creates a comfortable and fun environment for us to learn math and even make friends from other schools.

Sarita Zhang, HCI

Mr Gan's lessons are well structured and organised. He covers a wide range of questions from each topic. I feel that I am able to grasp topics better as Mr Gan explains concepts clearly.

Abirami, RJC

