Logarithms
Master logarithms with this comprehensive study guide. Learn the laws of logarithms, change of base formula, and solve logarithmic equations. Includes 8 worked examples with step-by-step video solutions and real-world applications.
Understanding Logarithms
Study Guide - Understanding Logarithms and Conversions
Conversion Between Logarithmic and Exponential Form
- Common logarithm: $\log_{10}(x) = \lg x$ (base of 10)
- Natural logarithm: $\log_e(x) = \ln x$ (base $e \approx 2.718$)
- $2^3 = 8$ can be written as $\log_2(8) = 3$
- $10^2 = 100$ can be written as $\lg 100 = 2$
- $e^1 = e$ can be written as $\ln e = 1$
Special Properties of Logarithms
Product Law of Logarithms
Quotient Law of Logarithms
Power Law of Logarithms
Change of Base Formula
Real-World Applications of Logarithms
Practice Questions with Video Solutions
Watch step-by-step video explanations for each question to master the concepts
Question
Convert each of the following to logarithmic form. (a) $x^{2y} = 4$ (b) $5^x = 12$ (c) $(4x)^{5-p} = a$
Video Solution
Step-by-Step Solution
- 1Recall the conversion formula: $a^b = c \Leftrightarrow b = \log_a(c)$
- 2(a) From $x^{2y} = 4$, we identify: base = $x$, exponent = $2y$, result = $4$
- 3Converting to logarithmic form: $2y = \log_x(4)$
- 4(b) From $5^x = 12$, we identify: base = $5$, exponent = $x$, result = $12$
- 5Converting to logarithmic form: $x = \log_5(12)$
- 6(c) From $(4x)^{5-p} = a$, we identify: base = $4x$, exponent = $5-p$, result = $a$
- 7Converting to logarithmic form: $5-p = \log_{4x}(a)$
Question
Solve each of the following equations. (a) $\ln 4x = 5$ (b) $\log_x(16) = 4$ (c) $\ln(3x) = 6$ (d) $\log_k(81) = 2$
Video Solution
Step-by-Step Solution
- 1(a) From $\ln 4x = 5$, convert to exponential form: $e^5 = 4x$
- 2Solving for $x$: $x = \frac{e^5}{4} \approx 37.1$
- 3(b) From $\log_x(16) = 4$, convert to exponential form: $x^4 = 16$
- 4Taking fourth root: $x = \sqrt[4]{16} = 2$ (since $2^4 = 16$)
- 5(c) From $\ln(3x) = 6$, convert to exponential form: $e^6 = 3x$
- 6Solving for $x$: $x = \frac{e^6}{3} \approx 134.7$
- 7(d) From $\log_k(81) = 2$, convert to exponential form: $k^2 = 81$
- 8Taking square root: $k = 9$ (positive value only)
Question
Simplify $\log_6(2) + \log_6(3)$ if possible.
Video Solution
Step-by-Step Solution
- 1Apply the Product Law: $\log_a(b) + \log_a(c) = \log_a(b \times c)$
- 2Both logarithms have the same base (6), so we can apply the law.
- 3$\log_6(2) + \log_6(3) = \log_6(2 \times 3)$
- 4$= \log_6(6)$
- 5Using the special property: $\log_a(a) = 1$
- 6$= 1$
Question
Simplify $\log_5(25) - \log_5(5)$ if possible.
Video Solution
Step-by-Step Solution
- 1Apply the Quotient Law: $\log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right)$
- 2Both logarithms have the same base (5), so we can apply the law.
- 3$\log_5(25) - \log_5(5) = \log_5\left(\frac{25}{5}\right)$
- 4$= \log_5(5)$
- 5Using the special property: $\log_a(a) = 1$
- 6$= 1$
Question
Evaluate each of the following without using the calculator. (a) $\log_8(64)$ (b) $\log_2(\sqrt{4}) + \log_2(\sqrt{3}) - \log_2(\sqrt{6})$
Video Solution
Step-by-Step Solution
- 1(a) We need to find: $\log_8(64)$
- 2Since $8 = 2^3$ and $64 = 2^6$, we can write: $64 = 8^2$
- 3Therefore: $\log_8(64) = \log_8(8^2) = 2$
- 4(b) First, convert square roots to fractional powers:
- 5$\log_2(\sqrt{4}) + \log_2(\sqrt{3}) - \log_2(\sqrt{6})$
- 6$= \log_2(4^{1/2}) + \log_2(3^{1/2}) - \log_2(6^{1/2})$
- 7Using Power Law: $\log_a(b^r) = r \cdot \log_a(b)$
- 8$= \frac{1}{2}\log_2(4) + \frac{1}{2}\log_2(3) - \frac{1}{2}\log_2(6)$
- 9$= \frac{1}{2}[\log_2(4) + \log_2(3) - \log_2(6)]$
- 10Using Product and Quotient Laws:
- 11$= \frac{1}{2}\log_2\left(\frac{4 \times 3}{6}\right) = \frac{1}{2}\log_2(2) = \frac{1}{2} \times 1 = \frac{1}{2}$
Question
(a) Given that $p = \log_a(9)$, find $\log_3(a)$ in terms of $p$ (b) If $p = \lg 14$, find $\log_{14}\left(1\frac{2}{5}\right)$ in terms of $p$
Video Solution
Step-by-Step Solution
- 1(a) Given: $p = \log_a(9)$, find $\log_3(a)$
- 2Using the change of base formula: $\log_a(9) = \frac{\log_3(9)}{\log_3(a)}$
- 3Since $9 = 3^2$, we have $\log_3(9) = 2$
- 4Therefore: $p = \frac{2}{\log_3(a)}$
- 5Rearranging: $\log_3(a) = \frac{2}{p}$
- 6(b) Given: $p = \lg 14$, find $\log_{14}\left(1\frac{2}{5}\right) = \log_{14}\left(\frac{7}{5}\right)$
- 7Using the change of base formula:
- 8$\log_{14}\left(\frac{7}{5}\right) = \frac{\lg\left(\frac{7}{5}\right)}{\lg 14}$
- 9$= \frac{\lg 7 - \lg 5}{p}$
- 10Since $14 = 2 \times 7$: $p = \lg 14 = \lg 2 + \lg 7$
- 11Therefore: $\lg 7 = p - \lg 2$
- 12$= \frac{p - \lg 2 - \lg 5}{p} = \frac{p - \lg 10}{p} = \frac{p - 1}{p}$
Question
Solve the simultaneous equations: $\log_4(x) - \log_2(y) = 2$ $3^x = 81\left(9^{\frac{3}{2}-3y}\right)$
Video Solution
Step-by-Step Solution
- 1From equation 1: $\log_4(x) - \log_2(y) = 2$
- 2Convert $\log_4(x)$ to base 2: $\log_4(x) = \frac{\log_2(x)}{\log_2(4)} = \frac{\log_2(x)}{2}$
- 3Substituting: $\frac{\log_2(x)}{2} - \log_2(y) = 2$
- 4Multiply by 2: $\log_2(x) - 2\log_2(y) = 4$
- 5$\log_2(x) - \log_2(y^2) = 4$
- 6$\log_2\left(\frac{x}{y^2}\right) = 4$, so $\frac{x}{y^2} = 2^4 = 16$ ... (i)
- 7From equation 2: $3^x = 81\left(9^{\frac{3}{2}-3y}\right)$
- 8Since $81 = 3^4$ and $9 = 3^2$:
- 9$3^x = 3^4 \times 3^{2(\frac{3}{2}-3y)}$
- 10$3^x = 3^4 \times 3^{3-6y}$
- 11$3^x = 3^{7-6y}$
- 12Therefore: $x = 7 - 6y$ ... (ii)
- 13Substitute (ii) into (i): $\frac{7-6y}{y^2} = 16$
- 14$7 - 6y = 16y^2$
- 15$16y^2 + 6y - 7 = 0$
- 16Factoring: $(2y-1)(8y+7) = 0$
- 17$y = \frac{1}{2}$ or $y = -\frac{7}{8}$ (reject negative)
- 18From (ii): $x = 7 - 6(\frac{1}{2}) = 7 - 3 = 4$
Question
The mass, $m$ grams, of a radioactive substance, present at time $t$ days after first being observed, is given by the formula $m = 28e^{-0.00072t}$. (a) Find the value of $m$ when $t = 20$ (b) Find the value of $t$ when the mass is half of its value at $t = 0$ (c) State the value which $m$ approaches as $t$ becomes very large (d) Sketch the graph of $m$ against $t$
Video Solution
Step-by-Step Solution
- 1(a) When $t = 20$:
- 2$m = 28e^{-0.00072(20)} = 28e^{-0.0144} \approx 28(0.9857) \approx 27.6$ grams
- 3(b) At $t = 0$: $m = 28e^0 = 28$ grams
- 4Half of this is $14$ grams. When $m = 14$:
- 5$14 = 28e^{-0.00072t}$
- 6$\frac{14}{28} = e^{-0.00072t}$
- 7$0.5 = e^{-0.00072t}$
- 8Taking natural logarithm of both sides:
- 9$\ln(0.5) = -0.00072t$
- 10$t = \frac{\ln(0.5)}{-0.00072} = \frac{-0.693}{-0.00072} \approx 963$ days
- 11(c) As $t \to \infty$, $e^{-0.00072t} \to 0$
- 12Therefore, $m \to 0$ as $t$ becomes very large
- 13(d) The graph starts at $(0, 28)$ and decreases exponentially, approaching $m = 0$ asymptotically as $t$ increases. This is a typical exponential decay curve.
Key Formulas to Remember
$a^b = c \Leftrightarrow b = \log_a(c)$Note: Fundamental relationship between exponential and logarithmic forms
$\log_a(b) + \log_a(c) = \log_a(b \times c)$Note: Sum of logs equals log of product
$\log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right)$Note: Difference of logs equals log of quotient
$\log_a(b^r) = r \cdot \log_a(b)$Note: Exponent can be moved to the front as a coefficient
$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$Note: Convert to any base $c$ (typically 10 or $e$)
$\log_a(1) = 0$$\log_a(a) = 1$$\ln(1) = 0$$\ln(e) = 1$$\log_x(y) = \frac{1}{\log_y(x)}$$\lg x = \log_{10}(x)$
Ready to Master Additional Math?
Sign up for our Free Mini-Courses and try our well-structured curriculum to see how it can help maximize your learning in mathematics online.