Surds: Master Surds for O Level Additional Math
Master surds with this comprehensive study guide. Learn how to simplify surds, perform operations with surds, rationalize denominators, and solve equations involving surds. Includes 7 practice questions with step-by-step solutions.
What Are Surds?
Simplifying Surds
Operations with Surds: Addition and Subtraction
Operations with Surds: Multiplication
Operations with Surds: Division
Rationalizing the Denominator
Comparing and Ordering Surds
Solving Equations Involving Surds
Practice Questions with Solutions
Work through comprehensive solutions for each question to master surds concepts. Some questions include video explanations. Perfect for O Level Additional Math exam preparation in Singapore.
Question
Simplify each of the following surds without using a calculator. (i) $\sqrt{40}$ (ii) $\sqrt{18}$ (iii) $\sqrt{396}$
Video Solution
Step-by-Step Solution
- (i) $\sqrt{40} = \sqrt{4 \times 10} = \sqrt{4} \times \sqrt{10} = 2\sqrt{10}$
- (ii) $\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}$
- (iii) $\sqrt{396} = \sqrt{4 \times 99} = \sqrt{4} \times \sqrt{99} = 2\sqrt{99} = 2\sqrt{9 \times 11} = 2 \times 3\sqrt{11} = 6\sqrt{11}$
Question
Simplify each of the following surds without using a calculator. (i) $\sqrt{75} + \sqrt{108}$ (ii) $\sqrt{32} + \sqrt{50}$ (iii) $(3 + 5\sqrt{2})(4 - \sqrt{2})$
Video Solution
Step-by-Step Solution
- (i) $\sqrt{75} + \sqrt{108} = \sqrt{25 \times 3} + \sqrt{36 \times 3} = 5\sqrt{3} + 6\sqrt{3} = 11\sqrt{3}$
- (ii) $\sqrt{32} + \sqrt{50} = \sqrt{16 \times 2} + \sqrt{25 \times 2} = 4\sqrt{2} + 5\sqrt{2} = 9\sqrt{2}$
- (iii) $(3 + 5\sqrt{2})(4 - \sqrt{2}) = 12 - 3\sqrt{2} + 20\sqrt{2} - 5(\sqrt{2})^2 = 12 + 17\sqrt{2} - 10 = 2 + 17\sqrt{2}$
Question
Simplify each of the following surds without using a calculator. (i) $\frac{2}{\sqrt{5}-3}$ (ii) $\frac{10}{\sqrt{2}-5}$ (iii) $\frac{8}{3\sqrt{7}-1}$
Video Solution
Step-by-Step Solution
- (i) $\frac{2}{\sqrt{5}-3} = \frac{2}{\sqrt{5}-3} \times \frac{\sqrt{5}+3}{\sqrt{5}+3} = \frac{2(\sqrt{5}+3)}{(\sqrt{5})^2 - 9} = \frac{2(\sqrt{5}+3)}{5-9} = \frac{2(\sqrt{5}+3)}{-4} = -\frac{\sqrt{5}+3}{2}$
- (ii) $\frac{10}{\sqrt{2}-5} = \frac{10}{\sqrt{2}-5} \times \frac{\sqrt{2}+5}{\sqrt{2}+5} = \frac{10(\sqrt{2}+5)}{(\sqrt{2})^2 - 25} = \frac{10(\sqrt{2}+5)}{2-25} = \frac{10(\sqrt{2}+5)}{-23} = -\frac{10(\sqrt{2}+5)}{23}$
- (iii) $\frac{8}{3\sqrt{7}-1} = \frac{8}{3\sqrt{7}-1} \times \frac{3\sqrt{7}+1}{3\sqrt{7}+1} = \frac{8(3\sqrt{7}+1)}{(3\sqrt{7})^2 - 1} = \frac{8(3\sqrt{7}+1)}{63-1} = \frac{8(3\sqrt{7}+1)}{62} = \frac{4(3\sqrt{7}+1)}{31} = \frac{12\sqrt{7}+4}{31}$
Question
It is given that $a$ and $b$ are positive integers such that $(a\sqrt{5} - 1)(\sqrt{5} + b) = 20\sqrt{5} + 32$. Form a pair of simultaneous equations and solve them to find the value of $a$ and of $b$.
Video Solution
Step-by-Step Solution
- Expand the left side: $(a\sqrt{5} - 1)(\sqrt{5} + b) = a\sqrt{5} \cdot \sqrt{5} + a\sqrt{5} \cdot b - 1 \cdot \sqrt{5} - 1 \cdot b$
- $= 5a + ab\sqrt{5} - \sqrt{5} - b = 5a - b + (ab - 1)\sqrt{5}$
- Equate to the right side: $5a - b + (ab - 1)\sqrt{5} = 20\sqrt{5} + 32$
- Compare constant terms: $5a - b = 32$ ... (1)
- Compare coefficients of $\sqrt{5}$: $ab - 1 = 20$, so $ab = 21$ ... (2)
- From equation (2), possible integer pairs $(a, b)$: $(1, 21)$, $(3, 7)$, $(7, 3)$, $(21, 1)$
- Test in equation (1): For $(a, b) = (7, 3)$: $5(7) - 3 = 35 - 3 = 32$ ✓
- Therefore, $a = 7$ and $b = 3$
Question
Solve $\sqrt{7x - 5} - x - 1 = 0$.
Video Solution
Step-by-Step Solution
- Rearrange to isolate the surd: $\sqrt{7x - 5} = x + 1$
- Square both sides: $(\sqrt{7x - 5})^2 = (x + 1)^2$
- $7x - 5 = x^2 + 2x + 1$
- Rearrange to standard form: $x^2 + 2x + 1 - 7x + 5 = 0$
- $x^2 - 5x + 6 = 0$
- Factorize: $(x - 2)(x - 3) = 0$
- Therefore $x = 2$ or $x = 3$
- Check $x = 2$: $\sqrt{7(2) - 5} - 2 - 1 = \sqrt{9} - 3 = 3 - 3 = 0$ ✓
- Check $x = 3$: $\sqrt{7(3) - 5} - 3 - 1 = \sqrt{16} - 4 = 4 - 4 = 0$ ✓
Question
A rectangular block has a square base. The length of each side of the base is $(\sqrt{5} - \sqrt{3})$ m and the volume of the block is $(4\sqrt{3} - 2\sqrt{5})$ m³. Find, without the use of a calculator, the height of the block in the form $a\sqrt{3} + b\sqrt{5}$.
Video Solution
Step-by-Step Solution
- Volume of rectangular block = Base area × Height
- Base area = $(\sqrt{5} - \sqrt{3})^2 = (\sqrt{5})^2 - 2\sqrt{5}\sqrt{3} + (\sqrt{3})^2 = 5 - 2\sqrt{15} + 3 = 8 - 2\sqrt{15}$
- Height = $\frac{\text{Volume}}{\text{Base area}} = \frac{4\sqrt{3} - 2\sqrt{5}}{8 - 2\sqrt{15}}$
- Simplify: $\frac{4\sqrt{3} - 2\sqrt{5}}{8 - 2\sqrt{15}} = \frac{2(2\sqrt{3} - \sqrt{5})}{2(4 - \sqrt{15})} = \frac{2\sqrt{3} - \sqrt{5}}{4 - \sqrt{15}}$
- Rationalize by multiplying by conjugate: $\frac{2\sqrt{3} - \sqrt{5}}{4 - \sqrt{15}} \times \frac{4 + \sqrt{15}}{4 + \sqrt{15}}$
- Numerator: $(2\sqrt{3} - \sqrt{5})(4 + \sqrt{15}) = 8\sqrt{3} + 2\sqrt{3}\sqrt{15} - 4\sqrt{5} - \sqrt{5}\sqrt{15}$
- $= 8\sqrt{3} + 2\sqrt{45} - 4\sqrt{5} - \sqrt{75} = 8\sqrt{3} + 6\sqrt{5} - 4\sqrt{5} - 5\sqrt{3} = 3\sqrt{3} + 2\sqrt{5}$
- Denominator: $(4 - \sqrt{15})(4 + \sqrt{15}) = 16 - 15 = 1$
- Therefore, height = $3\sqrt{3} + 2\sqrt{5}$ m
Question
A cylinder has a radius of $(\sqrt{2} - 1)$ cm and a volume of $(12 + 4\sqrt{2})\pi$ cm³. Find, without using a calculator, the exact value of its height, $h$, in the form $\frac{a + b\sqrt{2}}{c}$ cm, where $a$, $b$ and $c$ are integers.
Video Solution
Step-by-Step Solution
- Volume of cylinder = $\pi r^2 h$
- Given: $\pi r^2 h = (12 + 4\sqrt{2})\pi$
- Therefore: $r^2 h = 12 + 4\sqrt{2}$
- Find $r^2$: $r^2 = (\sqrt{2} - 1)^2 = (\sqrt{2})^2 - 2(\sqrt{2})(1) + 1^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}$
- Height: $h = \frac{12 + 4\sqrt{2}}{r^2} = \frac{12 + 4\sqrt{2}}{3 - 2\sqrt{2}}$
- Rationalize by multiplying by conjugate: $h = \frac{12 + 4\sqrt{2}}{3 - 2\sqrt{2}} \times \frac{3 + 2\sqrt{2}}{3 + 2\sqrt{2}}$
- Numerator: $(12 + 4\sqrt{2})(3 + 2\sqrt{2}) = 36 + 24\sqrt{2} + 12\sqrt{2} + 8(\sqrt{2})^2 = 36 + 36\sqrt{2} + 16 = 52 + 36\sqrt{2}$
- Denominator: $(3 - 2\sqrt{2})(3 + 2\sqrt{2}) = 9 - 8 = 1$
- Therefore: $h = \frac{52 + 36\sqrt{2}}{1} = 52 + 36\sqrt{2}$ cm
- In the required form: $h = \frac{52 + 36\sqrt{2}}{1}$ cm, where $a = 52$, $b = 36$, $c = 1$
Key Formulas to Remember for Surds
$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$Note: The square root of a product equals the product of square roots
$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$Note: The square root of a quotient equals the quotient of square roots
$\sqrt{a^2 \times b} = a\sqrt{b}$Note: Extract perfect square factors from under the square root
$a\sqrt{b} + c\sqrt{b} = (a+c)\sqrt{b}$Note: Only surds with the same radicand can be added or subtracted
$\sqrt{a} \times \sqrt{a} = a$Note: Squaring a square root gives the original number
$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$Note: Multiply numerator and denominator by the surd
$\frac{1}{a + \sqrt{b}} = \frac{a - \sqrt{b}}{a^2 - b}$Note: Multiply by the conjugate to eliminate the surd
$(a + \sqrt{b})(a - \sqrt{b}) = a^2 - b$Note: Useful when rationalizing denominators with binomials
$\sqrt{a} \times \sqrt{a} = a$$\sqrt{a^2} = |a| = a$ (for $a \geq 0$)$(\sqrt{a})^2 = a$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$(a + \sqrt{b})(a - \sqrt{b}) = a^2 - b$$\frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a}$
Ready to Master Additional Math?
Sign up for our Free Mini-Courses and try our well-structured curriculum to see how it can help maximize your learning in mathematics online.