Techniques of Integration for O Level A Math
Master integration for O Level & IGCSE Additional Mathematics (4047/0606). Learn power rule, exponential, trigonometric integration, and reverse differentiation. Includes 6 practice questions with step-by-step solutions by Timothy Gan.
Understanding Integration as the Reverse of Differentiation
Basics of Integration
Power Functions
| Basic Form | Linear Form (ax + b) |
|---|---|
$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \quad n \neq -1$ | $\int (ax+b)^n \, dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$ |
Integration of $\frac{1}{ax+b}$
| Basic Form | Linear Form (ax + b) |
|---|---|
$\int \frac{1}{x} \, dx = \ln|x| + c$ | $\int \frac{1}{ax+b} \, dx = \frac{1}{a}\ln|ax+b| + c$ |
Integration of Exponential Functions
| Basic Form | Linear Form (ax + b) |
|---|---|
$\int e^x \, dx = e^x + c$ | $\int e^{ax+b} \, dx = \frac{1}{a}e^{ax+b} + c$ |
Integration of Trigonometric Functions
| Basic Form | Linear Form (ax + b) |
|---|---|
$\int \cos x \, dx = \sin x + c$ | $\int \cos(ax+b) \, dx = \frac{\sin(ax+b)}{a} + c$ |
$\int \sin x \, dx = -\cos x + c$ | $\int \sin(ax+b) \, dx = -\frac{\cos(ax+b)}{a} + c$ |
$\int \sec^2 x \, dx = \tan x + c$ | $\int \sec^2(ax+b) \, dx = \frac{\tan(ax+b)}{a} + c$ |
Integration of Quadratic Trigonometric Functions
| Basic Form | Linear Form (ax + b) |
|---|---|
$\int \cos^2 x \, dx = \int \frac{\cos 2x + 1}{2} \, dx$ | [Use $\cos 2A = 2\cos^2 A - 1$] |
$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx$ | [Use $\cos 2A = 1 - 2\sin^2 A$] |
$\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx$ | [Use $\sec^2 A = 1 + \tan^2 A$] |
Integration of Power Functions
- $\int x^3 \, dx = \frac{x^4}{4} + c$
- $\int x^{-2} \, dx = \frac{x^{-1}}{-1} + c = -\frac{1}{x} + c$
- $\int (2x+3)^5 \, dx = \frac{(2x+3)^6}{2 \times 6} + c = \frac{(2x+3)^6}{12} + c$
Integration of Reciprocal Functions
- The absolute value $|x|$ ensures the logarithm is defined for both positive and negative values of $x$
- For $ax+b$, we must divide by the coefficient $a$
- This formula explains why $n \neq -1$ in the power rule – because $x^{-1}$ has its own special integration formula
- $\int \frac{5}{x} \, dx = 5\ln|x| + c$
- $\int \frac{1}{3x+2} \, dx = \frac{1}{3}\ln|3x+2| + c$
Integration of Exponential Functions
- The integral of $e^x$ is simply $e^x + c$ – the function stays the same
- For $e^{ax+b}$, we must divide by the coefficient of $x$ (which is $a$)
- The integral of exponential functions is easy to calculate compared to many other functions
- This function may also be solved using integration by substitution or integration by parts (advanced techniques)
- $\int e^{2x} \, dx = \frac{1}{2}e^{2x} + c$
- $\int 3e^{5x-1} \, dx = 3 \cdot \frac{1}{5}e^{5x-1} + c = \frac{3}{5}e^{5x-1} + c$
- $\int e^{-x} \, dx = -e^{-x} + c$ (represents exponential decay)
Integration of Trigonometric Functions
- Since $\frac{d}{dx}(\sin x) = \cos x$, we have $\int \cos x \, dx = \sin x + c$
- Since $\frac{d}{dx}(\cos x) = -\sin x$, we have $\int \sin x \, dx = -\cos x + c$
- Since $\frac{d}{dx}(\tan x) = \sec^2 x$, we have $\int \sec^2 x \, dx = \tan x + c$
- $\int \cos 3x \, dx = \frac{\sin 3x}{3} + c$
- $\int \sin 2x \, dx = -\frac{\cos 2x}{2} + c$
- $\int \sec^2 5x \, dx = \frac{\tan 5x}{5} + c$
Integration of Quadratic Trigonometric Functions
- $\cos 2A = 2\cos^2 A - 1$ → $\cos^2 A = \frac{\cos 2A + 1}{2}$
- $\cos 2A = 1 - 2\sin^2 A$ → $\sin^2 A = \frac{1 - \cos 2A}{2}$
- $\sec^2 A = 1 + \tan^2 A$ → $\tan^2 A = \sec^2 A - 1$
Integration As A Reverse Process of Differentiation
- Factor out constants
- Multiply/divide by constants to match the form
- Adjust for missing or extra terms
Practice Questions with Detailed Solutions
Work through these problems to master integration techniques
Question
Step-by-Step Solution
- 1(a) Apply power rule to each term:
- 2$\int (10x^4 - 5x^2 + x + 3) \, dx$
- 3$= \frac{10x^5}{5} - \frac{5x^3}{3} + \frac{x^2}{2} + 3x + c$
- 4$= 2x^5 - \frac{5}{3}x^3 + \frac{1}{2}x^2 + 3x + c$
- 5(b) Rewrite with negative/fractional powers first:
- 6$\int \left(6x^{-3} - 2x^{-1/2} + 8x^3\right) dx$
- 7$= \frac{6x^{-2}}{-2} - \frac{2x^{1/2}}{1/2} + \frac{8x^4}{4} + c$
- 8$= -3x^{-2} - 4x^{1/2} + 2x^4 + c = -\frac{3}{x^2} - 4\sqrt{x} + 2x^4 + c$
- 9(c) Simplify first by dividing each term:
- 10$\int \frac{4x^5 + 3x^4 + x}{6x^3} \, dx = \int \left(\frac{2}{3}x^2 + \frac{1}{2}x + \frac{1}{6}x^{-2}\right) dx$
- 11$= \frac{2}{3} \cdot \frac{x^3}{3} + \frac{1}{2} \cdot \frac{x^2}{2} + \frac{1}{6} \cdot \frac{x^{-1}}{-1} + c$
- 12$= \frac{2}{9}x^3 + \frac{1}{4}x^2 - \frac{1}{6x} + c$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1(a) Factor out the constant:
- 2$\int \frac{5}{6x} \, dx = \frac{5}{6} \int \frac{1}{x} \, dx = \frac{5}{6} \ln|x| + c$
- 3(b) Use reciprocal formula with $ax+b$:
- 4$\int \frac{1}{4x-3} \, dx = \frac{1}{4} \ln|4x-3| + c$
- 5(c) Separate the fraction first:
- 6$\int \frac{8 + (4x-3)^5}{(4x-3)^6} \, dx = \int \left(8(4x-3)^{-6} + (4x-3)^{-1}\right) dx$
- 7$= 8 \cdot \frac{(4x-3)^{-5}}{-5 \cdot 4} + \frac{1}{4}\ln|4x-3| + c$
- 8$= -\frac{2}{5(4x-3)^5} + \frac{1}{4}\ln|4x-3| + c$
- 9(d) Factor out the constant:
- 10$\int \frac{5}{2-5x} \, dx = 5 \int \frac{1}{2-5x} \, dx = 5 \cdot \frac{1}{-5} \ln|2-5x| + c$
- 11$= -\ln|2-5x| + c$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1(a) Apply exponential formula:
- 2$\int e^{2x-1} \, dx = \frac{e^{2x-1}}{2} + c$
- 3(b) Simplify first:
- 4$\int \frac{e^{4x} + 5}{e^{4x}} \, dx = \int \left(1 + 5e^{-4x}\right) dx$
- 5$= x + 5 \cdot \frac{e^{-4x}}{-4} + c = x - \frac{5}{4}e^{-4x} + c$
- 6(c) Expand the numerator first:
- 7$\int \frac{(e^{2x} - e^x)^2}{e^x} \, dx = \int \frac{e^{4x} - 2e^{3x} + e^{2x}}{e^x} \, dx$
- 8$= \int (e^{3x} - 2e^{2x} + e^x) \, dx$
- 9$= \frac{e^{3x}}{3} - 2 \cdot \frac{e^{2x}}{2} + e^x + c = \frac{1}{3}e^{3x} - e^{2x} + e^x + c$
- 10(d) Simplify the fraction:
- 11$\int \frac{1 - e^{4-3x}}{e^{4-3x}} \, dx = \int (e^{-(4-3x)} - 1) \, dx$
- 12$= \int (e^{3x-4} - 1) \, dx = \frac{e^{3x-4}}{3} - x + c$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1(a) Apply trigonometric formulas:
- 2$\int (7\cos 3x + \sec^2 x) \, dx = 7 \cdot \frac{\sin 3x}{3} + \tan x + c$
- 3$= \frac{7}{3}\sin 3x + \tan x + c$
- 4(b) Integrate term by term:
- 5$\int \left(x^{-3} - \sin(5x+2)\right) dx = \frac{x^{-2}}{-2} - \frac{-\cos(5x+2)}{5} + c$
- 6$= -\frac{1}{2x^2} + \frac{1}{5}\cos(5x+2) + c$
- 7(c) Apply trigonometric formulas:
- 8$\int (\sin 3x - \sec^2 6x) \, dx = -\frac{\cos 3x}{3} - \frac{\tan 6x}{6} + c$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1(a) Direct integration (no identity needed for $\sec^2$):
- 2$\int (3\sec^2 4x + \sin 3x) \, dx = 3 \cdot \frac{\tan 4x}{4} - \frac{\cos 3x}{3} + c$
- 3$= \frac{3}{4}\tan 4x - \frac{1}{3}\cos 3x + c$
- 4(b) Use identity for $\cos^2 x$:
- 5$\int (6\cos^2 x - \sec^2 2x + x) \, dx = \int \left(6 \cdot \frac{\cos 2x + 1}{2} - \sec^2 2x + x\right) dx$
- 6$= \int (3\cos 2x + 3 - \sec^2 2x + x) \, dx$
- 7$= 3 \cdot \frac{\sin 2x}{2} + 3x - \frac{\tan 2x}{2} + \frac{x^2}{2} + c$
- 8$= \frac{3}{2}\sin 2x - \frac{1}{2}\tan 2x + 3x + \frac{x^2}{2} + c$
- 9(c) Use identities for both squared terms:
- 10$\int (\sin^2 2x + \cos^2 x) \, dx = \int \left(\frac{1 - \cos 4x}{2} + \frac{\cos 2x + 1}{2}\right) dx$
- 11$= \int \left(\frac{1}{2} - \frac{1}{2}\cos 4x + \frac{1}{2}\cos 2x + \frac{1}{2}\right) dx$
- 12$= \int \left(1 - \frac{1}{2}\cos 4x + \frac{1}{2}\cos 2x\right) dx$
- 13$= x - \frac{1}{2} \cdot \frac{\sin 4x}{4} + \frac{1}{2} \cdot \frac{\sin 2x}{2} + c$
- 14$= x - \frac{1}{8}\sin 4x + \frac{1}{4}\sin 2x + c$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Part 1: Show the derivative
- 2Let $y = (2x-1)\sqrt{x+3} = (2x-1)(x+3)^{1/2}$
- 3Using product rule: $\frac{dy}{dx} = (2x-1) \cdot \frac{d}{dx}[(x+3)^{1/2}] + (x+3)^{1/2} \cdot \frac{d}{dx}[2x-1]$
- 4$= (2x-1) \cdot \frac{1}{2}(x+3)^{-1/2} + (x+3)^{1/2} \cdot 2$
- 5$= \frac{2x-1}{2\sqrt{x+3}} + 2\sqrt{x+3}$
- 6Combine fractions: $= \frac{2x-1}{2\sqrt{x+3}} + \frac{2\sqrt{x+3} \cdot 2\sqrt{x+3}}{2\sqrt{x+3}}$
- 7$= \frac{2x-1 + 4(x+3)}{2\sqrt{x+3}} = \frac{2x-1+4x+12}{2\sqrt{x+3}} = \frac{6x+11}{2\sqrt{x+3}}$ ✓
- 8Part 2: Find the integral
- 9From part 1, we know: $\frac{d}{dx}[(2x-1)\sqrt{x+3}] = \frac{6x+11}{2\sqrt{x+3}}$
- 10Notice the integral has $\sqrt{x+3}$ (not $2\sqrt{x+3}$) in denominator
- 11Multiply derivative by 2: $\frac{d}{dx}[2(2x-1)\sqrt{x+3}] = \frac{6x+11}{\sqrt{x+3}}$
- 12Therefore: $\int \frac{6x+11}{\sqrt{x+3}} \, dx = 2(2x-1)\sqrt{x+3} + c$
Video Solution
Watch the step-by-step video explanation for this question
Key Formulas to Remember
Note: Add 1 to exponent, divide by new exponent
Note: Remember to divide by coefficient of x
Note: Special case when n = -1
Note: Natural logarithm with coefficient adjustment
Note: The function is its own integral
Note: Divide by coefficient of x
Note: Reverse of sine differentiation
Note: Note the negative sign
Note: Reverse of tangent differentiation
- $\int \cos^2 x \, dx = \int \frac{\cos 2x + 1}{2} \, dx$ (use $\cos 2x = 2\cos^2 x - 1$)
- $\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx$ (use $\cos 2x = 1 - 2\sin^2 x$)
- $\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx$ (use $\sec^2 x = 1 + \tan^2 x$)
- $\int \cos(ax+b) \, dx = \frac{\sin(ax+b)}{a} + c$
- $\int \sin(ax+b) \, dx = -\frac{\cos(ax+b)}{a} + c$
- $\int \sec^2(ax+b) \, dx = \frac{\tan(ax+b)}{a} + c$
Ready to Master Additional Math?
Join our Additional Mathematics tuition classes or enroll in our comprehensive online course to achieve distinction in your O Level exams.