- Home
- Study Guides
We have already learnt how to differentiate a function and how to take the derivative from the previous article. Is there a way for us to get back the original equation? Yes, there is. In this article, we will show you how to get back the original equation from its derivative using integration – a topic that studies the relationship between a whole and its parts.Â
Integration is a fundamental topic that can be found in many mathematics syllabi such as the IGCSE Additional Mathematics (0606) and Singapore SEAB Additional Mathematics.
Many students find the idea of integration to be a bit intimidating. Here’s a slightly more sophisticated way to think about integration: as the inverse of differentiation. It’s a useful trick, and it’s easy enough to remember. Integration is an operation we use all the time, to find areas under graphs, the volume of a solid, and many others.
The power rule is the only integration rule that you’ll use when you’re first learning how to integrate. The power rule for integration is a way to find the integral of powers of $x$. The power rule for integration is applicable only to monomials, polynomials without any brackets.
$\int{{{x}^{n}}\text{d}x=\frac{{{x}^{n+1}}}{n+1}}+c,\text{ }n\ne -1$
$\int{{{(ax+b)}^{n}}\text{d}x=\frac{{{(ax+b)}^{n+1}}}{a(n+1)}}+c$
The rule is simple.
It’s not a difficult concept to grasp, but sometimes it’s a little confusing. If you’re having trouble understanding it, let’s try some practice questions together.
Integrate the following expressions with respect to $x$:
(a)
$10{{x}^{4}}-5{{x}^{2}}+x+3$
(a) $10{{x}^{4}}-5{{x}^{2}}+x+3$
(b)
$6\sqrt[3]{x}-\frac{2}{\sqrt{x}}+8{{x}^{3}}$
(b) $6\sqrt[3]{x}-\frac{2}{\sqrt{x}}+8{{x}^{3}}$
(c)
$\frac{4\sqrt[5]{x}+3{{x}^{4}}+\sqrt{x}}{6{{x}^{3}}}$
(c) $\frac{4\sqrt[5]{x}+3{{x}^{4}}+\sqrt{x}}{6{{x}^{3}}}$
$\begin{aligned}
& \int{10{{x}^{4}}-5{{x}^{2}}+{{x}^{1}}+3\,\text{d}x} \\
& =\frac{10{{x}^{5}}}{5}-\frac{5{{x}^{3}}}{3}+\frac{{{x}^{2}}}{2}+3x+c \\
& =2{{x}^{5}}-\frac{5}{3}{{x}^{3}}+\frac{1}{2}{{x}^{2}}+3x+c \\
\end{aligned}$
$\begin{aligned}
& \int{6{{x}^{\frac{1}{3}}}-\frac{2}{{{x}^{\frac{1}{2}}}}+8{{x}^{3}}}\,\text{d}x \\
& =\int{6{{x}^{\frac{1}{3}}}-2{{x}^{-\frac{1}{2}}}+8{{x}^{3}}}\,\text{d}x \\
& =\frac{6{{x}^{\frac{4}{3}}}}{\frac{4}{3}}-\frac{2{{x}^{\frac{1}{2}}}}{\frac{1}{2}}+\frac{8{{x}^{4}}}{4}+c \\
& =\frac{9}{2}{{x}^{\frac{4}{3}}}-4{{x}^{\frac{1}{2}}}+2{{x}^{4}}+c \\
& =\frac{9}{2}{{\sqrt[3]{x}}^{4}}-4\sqrt{x}+2{{x}^{4}}+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{4\sqrt[5]{x}+3{{x}^{4}}+\sqrt{x}}{6{{x}^{3}}}\text{d}x} \\
& =\int{\frac{4{{x}^{\frac{1}{5}}}}{6{{x}^{3}}}+\frac{3{{x}^{4}}}{6{{x}^{3}}}+\frac{{{x}^{\frac{1}{2}}}}{6{{x}^{3}}}\text{d}x} \\
& =\int{\frac{2}{3}{{x}^{\frac{1}{5}-3}}+\frac{1}{2}}{{x}^{4-3}}+\frac{1}{6}{{x}^{\frac{1}{2}-3}}\text{d}x \\
& =\int{\frac{2}{3}{{x}^{-\frac{14}{5}}}+\frac{1}{2}{{x}^{1}}+\frac{1}{6}{{x}^{-\frac{5}{2}}}\,\text{d}x} \\
& =\frac{2}{3}\left( \frac{{{x}^{-\frac{9}{5}}}}{-\frac{9}{5}} \right)+\frac{1}{2}\left( \frac{{{x}^{2}}}{2} \right)+\frac{1}{6}\left( \frac{{{x}^{-\frac{3}{2}}}}{-\frac{3}{2}} \right)+c \\
& =-\frac{10}{27}{{x}^{-\frac{4}{5}}}+\frac{1}{4}{{x}^{2}}-\frac{1}{9}{{x}^{-\frac{3}{2}}}+c \\
\end{aligned}$
The reciprocal function is a function whose value is the multiplicative inverse of another value. Integration of reciprocal functions is a powerful extension of the power rule of integration. However, this integral rule does not follow the usual power rule for integrals. So, how do we solve integrals involving reciprocal functions?
The following formula is used when a reciprocal function is involved in integration.
$\int{\frac{1}{x}\text{ d}x=\ln x}+c$
$\int{\frac{1}{ax+b}\text{ d}x=\frac{1}{a}\ln (ax+b)}+c$
We will obtain a natural logarithm as the answer, instead of a monomial.
Integrate the following expression with respect to $x$.
(a)
$\int{\frac{5}{6x}\text{ d}x}$
(a) $\int{\frac{5}{6x}\text{ d}x}$
(b)
$\int{\frac{1}{4x-3}\text{ d}x}$
(b) $\int{\frac{1}{4x-3}\text{ d}x}$Â
(c)
$\int{\frac{8+{{\left( 4x-3 \right)}^{5}}}{{{\left( 4x-3 \right)}^{6}}}\text{ d}x}$
(c) $\int{\frac{8+{{\left( 4x-3 \right)}^{5}}}{{{\left( 4x-3 \right)}^{6}}}\text{ d}x}$Â
(d)
$\int{\frac{5}{2-5x}\text{ d}x}$
(d) $\int{\frac{5}{2-5x}\text{ d}x}$
$\begin{aligned}
& \int{\frac{5}{6x}\text{d}x} \\
& =\int{\frac{5\cdot 1}{6x}\text{d}x} \\
& =\frac{5}{6}\int{\frac{1}{x}\text{d}x} \\
& =\frac{5}{6}\ln x+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{1}{4x-3}\text{d}x} \\
& =\frac{\ln \left( 4x-3 \right)}{4}+c \\
& =\frac{1}{4}\ln \left( 4x-3 \right)+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{8}{{{\left( 4x-3 \right)}^{6}}}+\frac{{{\left( 4x-3 \right)}^{5}}}{{{\left( 4x-3 \right)}^{6}}}\text{d}x} \\
& =\int{8{{\left( 4x-3 \right)}^{-6}}+\frac{1}{4x-3}}\,\text{d}x \\
& =\frac{8{{\left( 4x-3 \right)}^{-5}}}{\left( -5 \right)\left( 4 \right)}+\frac{\ln \left( 4x-3 \right)}{4}+c \\
& =-\frac{2}{5}{{\left( 4x-3 \right)}^{-5}}+\frac{1}{4}\ln \left( 4x-3 \right)+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{5}{2-5x}\text{d}x} \\
& =5\int{\frac{1}{2-5x}\text{d}x} \\
& =5\frac{\ln \left( 2-5x \right)}{\left( -5 \right)}+c \\
& =-\ln \left( 2-5x \right)+c \\
\end{aligned}$
In general, we cannot apply the power rule to the exponent on $e$. But fret not, exponential functions can be integrated using the formulas:
$\int{{{\text{e}}^{x}}\text{ d}x={{\text{e}}^{x}}}+c$
$\int{{{\text{e}}^{ax+b}}\text{ d}x=\frac{1}{a}{{\text{e}}^{ax+b}}}+c$
The integral of this function is easy to calculate as this function may also be solved using integration by parts or the substitution method.Â
Integrate the following expression with respect to $x$.
(a)
$\int{{{\text{e}}^{2x-1}}\text{ d}x}$
(a) $\int{{{\text{e}}^{2x-1}}\text{ d}x}$
(b)
$\int{\frac{{{\text{e}}^{4x}}+5}{{{\text{e}}^{4x}}}\text{ d}x}$
(b) $\int{\frac{{{\text{e}}^{4x}}+5}{{{\text{e}}^{4x}}}\text{ d}x}$
(c)
$\int{\frac{{{\left( {{\text{e}}^{2x}}-{{\text{e}}^{x}} \right)}^{2}}}{{{\text{e}}^{x}}}\text{ d}x}$
(c) $\int{\frac{{{\left( {{\text{e}}^{2x}}-{{\text{e}}^{x}} \right)}^{2}}}{{{\text{e}}^{x}}}\text{ d}x}$Â
(d)
$\int{\frac{1-{{\text{e}}^{4-3x}}}{{{\text{e}}^{4-3x}}}\text{ d}x}$
(d) $\int{\frac{1-{{\text{e}}^{4-3x}}}{{{\text{e}}^{4-3x}}}\text{ d}x}$
$\begin{aligned}
& \int{{{\text{e}}^{2x-1}}}\,\text{d}x \\
& =\frac{{{\text{e}}^{2x-1}}}{2}+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{{{\text{e}}^{4x}}+5}{{{\text{e}}^{4x}}}}\text{ d}x \\
& =\int{\frac{{{\text{e}}^{4x}}}{{{\text{e}}^{4x}}}+\frac{5}{{{\text{e}}^{4x}}}\,\text{d}x} \\
& =\int{1+5{{\text{e}}^{-4x}}\,\text{d}x} \\
& =x+\frac{5{{\text{e}}^{-4x}}}{\left( -4 \right)}+c \\
& =x-\frac{5}{4}{{\text{e}}^{-4x}}+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{{{\left( {{\text{e}}^{2x}}-{{\text{e}}^{x}} \right)}^{2}}}{{{\text{e}}^{x}}}\text{d}x} \\
& =\int{\frac{\left( {{\text{e}}^{2x}}-{{\text{e}}^{x}} \right)\left( {{\text{e}}^{2x}}-{{\text{e}}^{x}} \right)}{{{\text{e}}^{x}}}\text{d}x} \\
& =\int{\frac{{{\left( {{\text{e}}^{2x}} \right)}^{2}}-2{{\text{e}}^{2x}}\cdot {{\text{e}}^{x}}+{{\left( {{\text{e}}^{x}} \right)}^{2}}}{{{\text{e}}^{x}}}}\text{ d}x \\
& =\int{\frac{{{\text{e}}^{4x}}-2{{\text{e}}^{3x}}+{{\text{e}}^{2x}}}{{{\text{e}}^{x}}}\text{d}x} \\
& =\int{\frac{{{\text{e}}^{4x}}}{{{\text{e}}^{x}}}-\frac{2{{\text{e}}^{2x}}}{{{\text{e}}^{x}}}+\frac{{{\text{e}}^{2x}}}{{{\text{e}}^{x}}}\text{d}x} \\
& =\int{{{\text{e}}^{4x-x}}-2{{\text{e}}^{3x-x}}+{{\text{e}}^{2x-x}}\text{d}x} \\
& =\int{{{\text{e}}^{3x}}-2{{\text{e}}^{2x}}+{{\text{e}}^{x}}\,\text{d}x} \\
& =\frac{{{\text{e}}^{3x}}}{3}-\frac{2{{\text{e}}^{2x}}}{2}+{{\text{e}}^{x}}+c \\
& =\frac{1}{3}{{\text{e}}^{3x}}-{{\text{e}}^{2x}}+{{\text{e}}^{x}}+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{1-{{\text{e}}^{4-2x}}}{{{\text{e}}^{4-3x}}}}\,\text{d}x \\
& =\int{\frac{1}{{{\text{e}}^{4-3x}}}-\frac{{{\text{e}}^{4-3x}}}{{{\text{e}}^{4-3x}}}\text{d}x} \\
& =\int{{{\text{e}}^{-\left( 4-3x \right)}}-1\,\text{d}x} \\
& =\int{{{\text{e}}^{3x-4}}-1\,\text{d}x} \\
& =\frac{{{\text{e}}^{3x-4}}}{3}-x+c \\
\end{aligned}$
Previously, we have learnt the basics of trigonometric derivatives from the topic Techniques and Applications of Differentiation. Now, let’s look at the integration of trigonometric functions.Â
$\int{\cos x\,\text{d}x}=\sin x+c$
$\int{\sin x\,\text{d}x}=-\cos x+c$
$\int{{{\sec }^{2}}x\,\text{d}x}=\tan x+c$
$\int{\cos \left( ax+b \right)\text{ d}x=\frac{\sin \left( ax+b \right)}{a}}+c$
$\int{\sin \left( ax+b \right)\text{ d}x=-\frac{\cos \left( ax+b \right)}{a}}+c$
$\int{{{\sec }^{2}}\left( ax+b \right)\text{ d}x=\frac{\tan \left( ax+b \right)}{a}}+c$
Special thing about this is, the integrals and the derivatives are inter-related. Yes, it is the reverse of the derivatives of trigonometric functions.Â
Integrate the following expression with respect to $x$.
(a)
$7\cos 3x+{{\sec }^{2}}x$
(a) $7\cos 3x+{{\sec }^{2}}x$
(b)
$\frac{1}{{{x}^{3}}}-\sin \left( 5x+2 \right)$
(b) $\frac{1}{{{x}^{3}}}-\sin \left( 5x+2 \right)$Â
(c)
$\sin 3x-{{\sec }^{2}}6x$
(c) $\sin 3x-{{\sec }^{2}}6x$
$\begin{aligned}
& \int{7\cos 3x+{{\sec }^{2}}x\,\text{d}x} \\
& =\frac{7\sin 3x}{3}+\tan x+c \\
& =\frac{7}{3}\sin 3x+\tan x+c \\
\end{aligned}$
$\begin{aligned}
& \int{\frac{1}{{{x}^{3}}}-\sin \left( 5x+2 \right)\text{d}x} \\
& =\int{{{x}^{-3}}-\sin \left( 5x+2 \right)\text{d}x} \\
& =\frac{{{x}^{-2}}}{-2}-\frac{\left[ -\cos \left( 5x+2 \right) \right]}{5}+c \\
& =-\frac{1}{2}{{x}^{-2}}+\frac{1}{5}\cos \left( 5x+2 \right)+c \\
\end{aligned}$
$\begin{aligned}
& \int{\sin 3x-{{\sec }^{2}}6x}\,\text{d}x \\
& =-\frac{\cos 3x}{3}-\frac{\tan 6x}{6}+c \\
\end{aligned}$
The trigonometric identities are special equations used to simplify complex trigonometric expressions. The best thing is that the basic trigonometric functions and their identities can also be used to evaluate integrals involving the trigonometric function. Now, let’s look at the integration of quadratic trigonometric functions.Â
$\int{{{\cos }^{2}}x\,\text{d}x}=\int{\frac{\cos 2x+1}{2}}\,\text{d}x$
$\int{{{\sin }^{2}}x\text{ d}x}=\int{\frac{1-\cos 2x}{2}\text{ d}x}$
$\int{{{\tan }^{2}}x\text{ d}x}=\int{1-{{\sec }^{2}}x\text{ d}x}$
[Use $\cos 2A=2{{\cos }^{2}}A-1$]
[Use $\cos 2A=1-2{{\sin }^{2}}A$]
[Use ${{\sec }^{2}}A=1+{{\tan }^{2}}A$]
Integrate the following expression with respect to $x$.
(a)
$3{{\sec }^{2}}4x+\sin 3x$
(a) $3{{\sec }^{2}}4x+\sin 3x$
(b)
$6\cos 2x-{{\sec }^{2}}2x+\sqrt{x}$
(b) $6\cos 2x-{{\sec }^{2}}2x+\sqrt{x}$
(c)
${{\sin }^{2}}2x+{{\cos }^{2}}x$
(c) ${{\sin }^{2}}2x+{{\cos }^{2}}x$
$\begin{aligned}
& \int{3{{\sec }^{2}}4x+\sin 3x} \\
& =\frac{3\tan 4x}{4}-\frac{\cos 3x}{3}+c \\
& =\frac{3}{4}\tan 4x-\frac{1}{3}\cos 3x+c \\
\end{aligned}$
$\begin{aligned}
& \int{6{{\cos }^{2}}x-{{\sec }^{2}}}+\sqrt{x}\,\text{d}x \\
& =6\left[ \frac{\sin 2x}{2} \right]-\left[ \frac{\tan 2x}{2} \right]+\frac{{{x}^{\frac{3}{2}}}}{\frac{3}{2}}+c \\
& =3\sin 2x-\frac{1}{2}\tan 2x+\frac{2}{3}{{x}^{\frac{3}{2}}}+c \\
\end{aligned}$
$\begin{aligned}
& \int{{{\sin }^{2}}2x+{{\cos }^{2}}x\,\text{d}x} \\
& =\int{\frac{1-{{\cos }^{2}}\left( 2x \right)}{2}}+\frac{\cos 2x+1}{2}\text{d}x \\
& =\int{\frac{1}{2}}-\frac{1}{2}\cos 4x+\frac{1}{2}\cos 2x+\frac{1}{2}\text{d}x \\
& =\int{1-\frac{1}{2}\cos 4x}+\frac{1}{2}\cos 2x\,\text{d}x \\
& =x-\frac{1}{2}\left( \frac{\sin 4x}{4} \right)+\frac{1}{2}\left( \frac{\sin 2x}{2} \right)+c \\
& =x-\frac{1}{8}\sin 4x+\frac{1}{4}\sin 2x+c \\
\end{aligned}$
From above, we know that integration and differentiation are inverse operations. Differentiation is a way of finding the rate at which something changes. Integration is a way of finding the total amount of change.
Is it possible to solve an integral question if you are only given a function and its derivative? We can. The answer is surprisingly simple. Let’s have a look at the practice question below.
Show that $\frac{\text{d}}{\text{d}x}\left[ (2x-1)\sqrt{x+3} \right]=\frac{6x+11}{2\sqrt{x+3}}$. Hence, find $\int{\,\frac{6x+11}{\sqrt{x+3}}\text{ d}x}$.
$\begin{aligned}
& \frac{\text{d}}{\text{d}x}\left[ \left( 2x-1 \right){{\left( x+3 \right)}^{\frac{1}{2}}} \right] \\
& =\left( 2x-1 \right)\left[ \frac{1}{2}{{\left( x+3 \right)}^{-\frac{1}{2}}} \right]+{{\left( x+3 \right)}^{\frac{1}{2}}}\left( 2 \right) \\
& =\left( 2x-1 \right)\cdot \frac{1}{2}\cdot \frac{1}{\sqrt{x+3}}+2\sqrt{x+3} \\
& =\frac{2x-1}{2\sqrt{2x+3}}+2\sqrt{x+3} \\
& =\frac{2x-1}{2\sqrt{2x+3}}+\left( 2\sqrt{x+3}\cdot \frac{2\sqrt{x+3}}{2\sqrt{x+3}} \right) \\
& =\frac{2x-1+4\left( x+3 \right)}{2\sqrt{x+3}} \\
& =\frac{2x-1+4x+12}{2\sqrt{x+3}} \\
& =\frac{6x+11}{2\sqrt{x+3}} \\
\end{aligned}$
$\begin{aligned}
 \int{\frac{6x+11}{2\sqrt{x+3}}\text{d}x}=&\left( 2x-1 \right)\sqrt{x+3}+{{c}_{1}} \\
 \frac{1}{2}\int{\frac{6x+11}{\sqrt{x+3}}\text{d}x}=&\left( 2x-1 \right)\sqrt{x+3}+{{c}_{1}} \\
 \int{\frac{6x+11}{\sqrt{x+3}}\text{d}x}=&2\left( 2x-1 \right)\sqrt{x+3}+c;\\&c=2{{c}_{1}}
\end{aligned}$
Do sign up for our Free Mini-Courses and try our well-structured curriculum to see how it can help to maximize your learning in mathematics online.
Secondary School Additional Mathematics Free Online Course Sign Up.
You may also find the pricing and plans for our Additional Mathematics unlimited all-access courses here!
With our online courses, you can learn at your own pace and take your time whenever it’s most convenient for you. Experience learning with us now for free!
Topics included:
How can we help?